Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

Sr. No.	Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of Learning (Approx.)
Fifth	Semester (3 rd year of UG)				
1.	Thermal Power Plant	ME301	3-1-0	4	70
2.	Tribology and Mechanical Vibration	ME303	3-0-2	4	85
3.	Machining Processes	ME305	3-0-2	4	85
4.	Fundamentals of Machine Design	ME307	3-1-2	5*	100
5.	Institute Elective – I	ME35x	3-0-0	3	55
			Total	20	395
6.	Minor/Honor	M/HME XX	3-1-0	4	70
7.	Vocational / Professional Mechanical Practice – III	MEv05	0-0-8	5	200 (20 x 10)

(List of Elective / Honors / Minors)

Sr. No.	Electives	Code
	Institute Elective - I [Semester - V]	
1	Mechanics of Solids	ME351
2	Smart Materials and Structures	ME353
3	Bio-Mechanics	ME355
4	Computational Fluid Dynamics	ME357
5	Elements of Micro hydro plant and Pumping Systems	ME359
6	Renewable Energy	ME361
7	Additive Manufacturing	ME363
8	Powder Processing Techniques	ME365
9	Production Planning & Control	ME367
	Honors	
1	Analysis and Synthesis of Mechanisms	MEHD2
2	Advanced Heat Transfer	MEHT2
3	Industry 5.0	MEHM2
4	Electric Vehicles and Energy Storage Systems	MEHE2
	Minors	
1	Thermal & Fluid Engineering	MEM32

B.Tech. III (DoME) Semester – 5 THERMAL POWER PLANT	Scheme	L	Т	Р	Credit
ME301		3	1	0	04

2000 OF	Course Outcomes (COs): e end of the course, students will be able to
CO1	Apply thermodynamic cycles to steam and gas power plant
CO2	Analyze the co-generation and combined cycles
CO3	Analyse the performance of steam generators and steam nozzle
CO4	Evaluate the efficiency and losses of steam turbine
CO5	Perform heat mass balance of steam condensers and cooling towers
CO6	Understand the working of fuel/Air handling unit and economics of power plant

2.	Syllabus				
	THERMODYNAMIC CYCLES FOR THERMAL POWER PLANTS (12 I	hours)			
	Review of Thermodynamic, Simple steam power cycle, Carnot cycle, Simple Rankine cycle, Reheat Rankine cycle, Regenerative Rankine cycle, Reheat -regenerative Rankine cycle, Brayton/gas cycle, Combined gas—vapor power cycle, Heat rate component of gas turbine and steam generation in heat recovery steam generator, Binary Vapor cycle, Co-generation cycle				
	ELEMENTS OF THERMAL POWER PLANT (22 hours)				
	Steam Generators: Types of boiling – Nucleate/Film boiling, Natural/Force circulation, Circulation ratio/Evaporation ratio, Types of Boilers – (a) Fuel (b) Operation (c) Pressure mode, Boiler pressure parts, Boiler mountings and safety devices.				
	Steam Nozzles: Introduction, Types of nozzles, Flow of steam through nozzles, Expa steam considering friction, Nozzle efficiency, Super-saturated flow through nozzle.	insion o			
	Steam Turbines: Impulse Turbine: Working principle, Forces on blades, Velocity diagrams, efficiency of multi stage turbine, Specific speed and performance characteristic curves for impulse turbine. Impulse Reaction Turbine: Working principle, Degree of reaction, Compounding of pressure and velocity, Isentropic and cylinder wise steam turbine efficiency, Dryness fraction and degree of superheat, Heat rate calculation, Bleed and extraction of steam from turbine, Heat and mass balance of steam turbine.				

Steam Condensers: Types – (a) Surface (b) Jet (c) Air cooled condenser, Vacuut Vacuum efficiency, Ejector application, Heat mass balance of steam condensers: Types – (a) Natural Draft (b) Force Draft, Evaporation losses, Drift losse blow down calculation, Cooling Tower structures – louvers/fins, risers and su area calculation	enser. Cooling s, Makeup and
WORKING UNITS OF POWER PLANT	(06 hours)
Fuel and Air handling unit, Types of the fuel —Coal/Biomass/Natural Gas, Air-FID Fan, Ash handling unit, Open conveyer/closed shell type arrangement, hopp handling unit, Feed water circuit, quality parameter, LP Dosing, Deaerator app	er, Feed water
POWER PLANT ECONOMICS	(05 hours)
Basic economics of power plant as fuel input, Tariff structure in India – KW factor, penalty of low generation, other taxes as per Central Electricity Author guidelines for power trading through Indian Energy Exchange (IEX) and Rea (RTM), Capital expenditures (Cpex) and Operating expenses (Opex) and power to structure.	rity (CEA), CEA l Time Market
(Total Contact Time	ie: = 45 Hours)

3.	Books Recommended
1	S. Domkundwar, C.P. Kothandaraman and A.V. Domkundwar, A Course in Thermal Engineering, Dhanpat Rai and Co, 2018
2	P.K. Nag, Power Plant Engineering, Tata McGraw Hill Publications, 2017
3	P.K Das & A.K Das, An Introduction to Thermal Power Plant Engineering and Operation, Notion Press, 2018
4	Y.A. Cengel and M.A. Boles, Thermodynamics, Tata McGraw Hill, 2017
5	R. K. Rajput, Thermal Engineering, Laxmi Publications, 2017

B.Tech. III (DoME) Semester – 5 TRIBOLOGY AND MECHANICAL VIBRATION	Scheme	L	Т	Р	Credit
ME303		3	0	2	04

1 At th	e end of the course, students will be able to
CO1	Get the knowledge of fundamental of tribology and its importance
CO2	Ability to understand the laws of friction & different types of wear
CO3	Cognize the different lubrication regimes and its applications.
CO4	Understand different methods to determine natural frequency of systems
CO5	Evaluate natural frequencies for Free Damped linear and tornsnal Systems
CO6	Investigate the frequencies for Forced Vibration linear and rotational Systems

2.	Syllabus				
	INTRODUCTION	(05 Hours)			
	Tribology, Types of engineering contacts: conforming and non-conforming, Surface interactions and characterization, micro and nano tribology, surface roughness measurement techniques, surface energy and flash temperature theory				
	THEORIES OF FRICTION	(05 Hours)			
	Types of friction, Laws of sliding friction, concept of adhesion, Models of asperity deformation, measurement of friction, friction of metals ceramics and Polymers				
	WEAR	(05 Hours)			
	Types of wear, , Archard's law, wear mechanism adhesive wear, abrasive wear, erosion wear, factors affecting corrosive wear, wear map, various wear testing methods- pin on disc, pin on drum, slurry wear, air jet and water jet erosion as per ASTM standards				
	LUBRICATION	(06 Hours)			
	Types of lubrication, viscosity, characteristics of fluids as lubricant, hydrodynamic lubrication, Reynold's equation, elastohydrodynamic lubrication- partial and mixed, boundary lubrication, various additives, solid lubrication				
	FUNDAMENTAL OF VIBRATIONS	(03 Hours)			

Department of Mechanical Engineering

B.Tech. –III. Mechanical Engineering (As per NEP)

B. Tech. – III, Mechanical Engineering (As per NEP)	
Introduction, definition, SHM, beats phenomenon, complex method of repres harmonic vibration.	enting
UNDAMPED FREE VIBRATIONS OF SINGLE DEGREE OF FREEDOM SYSTEM	(06 Hours)
Introduction, deviation of differential equations and resolution, equivalent stit combinations, Newton's method and energy method for problem solutions	ffness of spring
DAMPED FREE VIBRATIONS OF SINGLE DEGREE OF FREEDOM SYSTEM	(06 Hours)
Different types of damping, free vibrations with viscous dampers	
FORCED VIBRATION OF SINGLE DEGREE OF FREEDOM SYSTEMS	(09 Hours)
Forced vibration with constant harmonic excitation, with rotating and unbalance, due to the support, vibration isolation and transmissibili instruments, displacement, velocity, acceleration, frequency-measuring instruspeed of shaft having single and multiple disc.	ty, measuring

3.	Practical
1	Tuned rectilinear vibration absorber
2	Rectilinear vibration of cantilever beam
3	Free damped vibration
4	Fixed free three rotor system
5	To determine the viscosity by using falling ball viscometer
6	Demonstrate friction and wear measurement on pin on disc apparatus
7	Demonstrate the coefficient of friction measurement on reciprocation motion
8	Performance of Journal bearing test rig
9	To measure the surface roughness using profile-meter

4.	Books Recommended
1	Bharat Bhushan, Principles and Applications of Tribology, John Wiley & Sons, Ltd, 2013
2	B. C Majmudar, Introduction to Tribology of Bearings, S Chand & Company, 2010
3	Fundamentals of Tribology Basu & Sengupta, PHL, learning Pvt. LTD, New Delhi, 2015
4	S. S. Rao, Mechanical Vibrations, Pearson Education, 6th Edition, 2018.
5	G. K. Grover, Mechanical Vibrations, Nem Chand & Bros, 2009.

(Total Contact Time: = 45 Hours)

B.Tech. III (DoME) Semester – 5 MACHINING PROCESSES	Scheme	L	Т	Р	Credit
ME305		3	0	2	04

1 At th	e end of the course, students will be able to
CO1	Explain mechanics of chip formation and types of chips.
CO2	Demonstrate relationship between chip formation and generation of stress, strain, force and wear.
CO3	Describe conventional machining processes, geometry of cutting tools, and mechanism of conventional machine tools.
CO4	Select machining process (es), cutting tool (s) and machine tool (s) to produce a given part.
CO5	Calculate machining time incurred in machining a part if machining parameters and part dimensions are given.
CO6	Illustrate working principle and machine setup of unconventional machining processes.

2.	Syllabus				
	MECHANICS OF MACHINING	(12 hours)			
	Mechanism of chip formation, types of chips, chip breakers, Marchant circle diagram, cutting forces and power, tool wear and tool life; machinability; economics of machining; cutting tool materials; types of tools.				
	CONVENTIONAL MACHINING PROCESSES	(16 hours)			
	Introduction to Turning, shaping, planning, milling, drilling, broaching processes; types of machines and operations; different mechanisms on the machine; tool and work holding devices; special attachments; capstan and turret machine; automats; machining time calculations.				
	machines and operations; different mechanisms on the machine; tool and devices; special attachments; capstan and turret machine; automats;	d work holding			
	machines and operations; different mechanisms on the machine; tool and devices; special attachments; capstan and turret machine; automats;	d work holding			
	machines and operations; different mechanisms on the machine; tool and devices; special attachments; capstan and turret machine; automats; calculations.	(06 hours)			

finishing.	INTRODUCTION TO UNCONVENTIONAL MACHINING PROCESSES	(06 hours) ime: = 45 Hours)
	finishing.	

3.	Practical
1	Machining Practices on lathe for step turning, taper turning, grooving, thread cutting operations
2	Machining practices on shaping and drilling machine
3	Machining practices on milling machine to cut spur or helical gear
4	Calculation of shear plane angle under different machining conditions
5	Measurement of chip tool interface temperature under different machining conditions
6	Grinding Practice of single point cutting tool and measure tool angles
7	Demonstration of Capstan lathe
8	Demonstration of EDM process

4.	Books Recommended
1	S. K. Hajra Choudhury, Element of Workshop Technology; Vol. 2, 14 th Edition, Media Promoters and publishers Pvt., 2010
2	V. K. Jain, Advanced machining processes; Allied publishers, 2009
3	A. B. Chattopadhyay, Machining and Machine Tools; 2 nd Edition, John Wiley & Sons, 2017
4	Kalpakjian, S. and Illinois, S. R., Manufacturing Engineering and Technology; 6 th Edition, Pearson Prentice Hall, New Jersey, 2010
5	M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; 3 rd Edition, Wiley India Pvt. Ltd., New Delhi, 2012

B.Tech. III (DoME) Semester – 5 FUNDAMENTALS OF MACHINE DESIGN	Scheme	L	Т	Р	Credit
ME307		3	1	2	05

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Describe the basic principles of machine design considerations.
CO2	Understand the theories of failure.
CO3	Estimate the life of machine components subjected to dynamic loading.
CO4	Design the various types of joints and fasteners.
CO5	Design the shafts and its components.
CO6	Evaluate the design of various types of mechanical springs.

2.	Syllabus				
	DESIGN CONSIDERATIONS	(04 Hours)			
	Introduction to design procedure, design requirements and material selection, standardization, limits, fits and tolerance as per I.S. specification, review of force analysis concepts, factor of safety, mitigation of stress concentration.				
	DESIGN ANALYSIS	(08 Hours)			
	Types of loads and stresses. parts subjected to tension, compression, shear, bending and torsion – such as tie rods, push rods, levers, axels etc. parts subjected to combined loads, combined stresses, Mohr's circle diagram, theories of failure, stresses in thin and thick cylinders, shrink fitted and press fitted connections.				
	DYNAMIC LOADING	(07 Hours)			
	Cyclic loading, endurance limit, fatigue failure analysis, Soderberg and Good estimation of life of a component, thermal stresses, creep				
	Cyclic loading, endurance limit, fatigue failure analysis, Soderberg and Good				
	Cyclic loading, endurance limit, fatigue failure analysis, Soderberg and Good estimation of life of a component, thermal stresses, creep	(26 Hours)			

Practical
Design and drawing of cotter joint
Design and drawing of knuckle joint
Design and drawing of any type of coupling: a. Flange coupling b. Rigid coupling c. Bush-pin type coupling
Design and drawing of screw jack.
Design of spring
Design of fasteners
Design of levers
Design of transmission shaft

4.	Books Recommended
1	R. G. Budynas and K. Nisbett, Shigley's Mechanical Engineering Design, 11 th Edition, McGraw Hill, 2020.
2	R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, 6 th Edition, Wiley, 2017.
3	V. B. Bhandari, Design of Machine Elements, 4 th Edition, Tata McGraw Hill, 2016.
4	R. L. Norton, Machine Design, 5 th Edition, Pearson Education India Ltd., 2014.
5	M. F. Spotts, Design of Machine Elements, Pearson Education India Ltd., 2004.

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 5 MECHANICS OF SOLIDS (INSTITUTE ELECTIVE-I)	Scheme	L	Т	Р	Credit
ME351		3	0	0	03

	e end of the course, students will be able to
CO1	Analyse stress and strain.
CO2	Apply the basic methods to determine the deflection in beams
CO3	Design of columns under buckling
CO4	Compare the members under axis symmetric loads
CO5	Examine the circular and non-circular cross section shafts under torsion loads and combined loads
CO6	Illustrate the theoretical basis about the different strain energy methods

2.	Syllabus					
	STRESS AND STRAIN ANALYSIS	(08 Hours)				
	Mohr's circle, principal stresses, principal planes, Analysis of Deformations: Small deformation theory, definition of strains, strain at a point, normal and shear strain, plane strain, strain transformations, Mohr's circle, principal strains, principal axes of strains, compatibility equations, strain gauge rosettes, strain displacement relations in cylindrical and spherical polar coordinate					
	DEFLECTION OF BEAM	(10 Hours)				
	Equation of elastic curve for the loaded beam, relationship between bending moment, slope and deflection; calculation of deflection by integration, moment area and unit-load methods, Strain energy in flexure.					
	ELASTIC STABILITY OF COLUMNS	(07 Hours)				
	Euler's theory of initially straight columns, critical loads for different end condition of columns, eccentric loading, columns with small initial curvature, empirical formulae, Short struts subjected to eccentric loads					
	MEMBERS SUBJECTED TO AXI-SYMMETRIC LOADS	(06 Hours)				
	Stresses and strains in thin cylindrical shells and spheres under internal pressure, stresses in thin rotating rings.					

DOME

TORSION OF NON- CIRCULAR SECTIONS	(08 Hours)
Torsion of shafts with rectangular cross-sections, wrapping, torsion of thin tubes, shafts subjected to combined loads Torsion of shaft sections, Prandtl stress function approach, membrane analogy	
ENERGY METHODS	(06 Hours)
Energy, reciprocal theorem, principle of virtual work, Castigliano's minimum potential energy, Rayleigh-Ritz method for approximate virtual work	
(Total Cor	ntact Time: = 45 Hours)

3.	Books Recommended
1	F. P. Beer, E. R. Johnston, Jr., J. T. Dewolf and D. E. Mazureu, Mechanics of Materials, 5th Edition, McGraw Hill, 2009
2	S. P. Timoshenko and D. H. Young, Elements of Strength of Materials, 5th Edition, East West Press Pvt. Ltd., 2009
3	S. Ramamurtham, Strength of Materials, Dhanpat Rai Publications, 2005
4	E. P. Popov, Engineering Mechanics of Solids, Prentice-Hall, 1999
5	L. S. Srinath, Advanced Mechanics of Solids, 3rd Edition, Tata McGraw Hill, 2009

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 5 SMART MATERIALS AND STRUCTURES	Scheme	L	Т	Р	Credit
(INSTITUTE ELECTIVE-I) ME353		3	0	0	03

	e end of the course, students will be able to
CO1	Understanding the basic principles of smart materials.
CO2	Explain various actuators and sensors in smart structures.
CO3	Analyze smart composites.
CO4	Illustrate the signal processing and control systems.
CO5	Describe the utilization of smart materials in engineering applications.
CO6	Apply fundamentals of smart materials and model the advanced structured smart material.

2.	Syllabus				
	INTRODUCTION	(12 Hours)			
	Introduction to smart materials and structures, Principles of piezoelectricity, Single crystals and Polycrystalline, Piezoelectric polymers, Magnetostrictive materials, Electro-active materials, Electronic materials, Electro-active polymers, Ionic polymer matrix composite (IPMC), Shape Memory Effect, Shape Memory Alloys, Shape Memory Polymers, Electro-rheological Fluids, Magneto Rheological Fluids.				
	SENSING AND ACTUATION	(10 Hours)			
	Piezoelectric Sensors and actuators, Accelerometers, Active Fibre Sensing, Magnetostrictive Sensing, Shape Memory Actuators, Application of Smart Sensors and actuators for Structural Health Monitoring (SHM), Closed-loop and Open-loop Smart Structures, Active Vibration Control, Active Shape Control, Passive Vibration Control, Hybrid Vibration Control				
	SMART COMPOSITES	(08 Hours)			
	ed Composites amics of Smart elling of Smart				
	SIGNAL PROCESSING AND CONTROL SYSTEMS (08 Hours)				

Page **12** of **94**

Data Acquisition and Processing – Signal Processing and Control for Sensors as Geometrical Processors – Signal Processing – Control System	Smart Structures -
ADVANCES IN SMART STRUCTURES AND MATERIALS	(07 Hours)
Self-sensing piezoelectric Transducers, Energy Harvesting Materials, Auto Self-Healing Polymers, Intelligent System Design, Emergent System Design	
(Total Conta	ct Time: = 45 Hours

3.	Books Recommended
1	A.V. Srinivasan, Smart Structures –Analysis and Design, 1st Edition, Cambridge University Press, New York, 2001
2	M. V. Gandhi and B. S. Thompson, Smart Materials and Structures, Chapman & Hall, London, 1992
3	C. Brian, Smart Structures and Materials, Artech House, 2000
4	P. Gauenzi, Smart Structures, Wiley, 2009
5	W. G. Cady, Piezoelectricity, Dover Publication, New York, 2014

B.Tech. III (DoME) Semester – 5 BIO-MECHANICS (INSTITUTE ELECTIVE-I)	Scheme	L	Т	Р	Credit
ME355		3	0	0	03

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Illustrate general principles of biomechanics.
CO2	Explain load on human body and applications of biomechanics.
CO3	Describe structure of human body.
CO4	Apply principles of kinetics and kinematics in motion of human body parts.
CO5	Evaluate failure mechanisms of implants for joint replacements.
CO6	Analyze static and dynamic loads on biomaterials.

2.	Syllabus	
	INTRODUCTION	(06 Hours)
	Introduction to Biomechanics, Standard reference terminology, Forms of movement terminology, Qualitative analysis of human movement. Tools for kinematic quantities, Basic concepts related to kinetics, Mechanical load on hold Tools for measuring kinetic quantities. Applications of Biomechanics.	or measuring
	MUSCULOSKELETAL SYSTEM	(04 Hours)
	Bone, Muscle, Ligament, Tendon, Cartilage and Meniscus – structure and function of synovial joints – Hip, Knee, Shoulder, Elbow	n of anatomy
	BIOMECHANICS OF HUMAN SKELETAL	(08 Hours)
	Bone adaptation and Viscoelasticity, Bone anisotropy. Composition and struct tissue, Bone growth and development, Bone response to stress, Osteop architecture, Joint Stability, Technique for joint flexibility, Behavioral p musculotendinous unit, Structural organization of skeletal muscle, Skeletal musc Factors affecting muscular force generation. Muscle strength, power and endurations.	orosis, Joint roperties of scle function,
	BIOMECHANICS OF HUMAN UPPER AND LOWER EXTREMITY	(08 Hours)
	Introduction, Structure of Shoulder, elbow, hip, ankle, foot, spine, wrist. Joints and knee, loads on Shoulder, elbow, hip, knee, Ankle, foot and spine. Movements	

KINEMATICS AND KINETICS OF HUMAN BODY MOVEMENT	(08 Hours)
Introduction, Linear kinematic quantities, Kinematics of projectile motion. Fact projectile trajectory, Analyzing projectile motion, Observing the angular kinematics movement. Measuring angles, Angular kinematics relationships, Relation between angular motions, Mechanical behavior of bodies in contact. Resistance acceleration, Angular momentum, Centripetal force. Joint Kinematics, Princi and Inverse Dynamics, Calculations on joint forces and moments, Calculations forces. Human movement in a fluid medium	atics of humar veen linear and ce to angular ple of Forward
BIOMECHANICS OF JOINT REPLACEMENT	(05 Hours)
Biomechanics of joint replacement – Hip, Knee, Shoulder, Spine, Cemented a fixation, Failure mechanisms of implants, Implant design considerations	nd Cementless
BIOMATERIALS	(06 Hours)
Introduction, Biological material, Man-made material, Current avenues research. Static load considerations. Cyclic loading consideration. Composite impetus for more flexible prostheses	

3.	Books Recommended
1	S. A. Berger, W. Goldsmith and E. R. Lewis, Introduction to Bioengineering, Oxford University Press, 2023.
2	S. J. Hall, Basic Biomechanics, 8th edition, McGraw Hill, 2019.
3	D. Knudson, Fundamentals of Biomechanics, 3rd edition, Springer, 2021.
4	V C Mow & R Huiskes, Basic Orthopaedic Biomechanics and Mechano-biology, 3rd Edition, Lippincott Williams & Wilkins, 2005.
5	B. Nigg & W. Herzog. <i>Biomechanics of the</i> Musculo-skeletal system, 3rd edition, John Wiley & Sons, 2007.

B.Tech. III (DoME) Semester – 5 COMPUTATIONAL FLUID DYNAMICS	Scheme	L	Т	Р	Credit
(INSTITUTE ELECTIVE-I)		3	0	0	03
ME357				- 50	

1. At the	Course Outcomes (COs): end of the course, students will be able to
CO1	Develop mathematical model for fluid flow and associated transport processes.
CO2	Classify various discretization methods and errors associated with numerical solution.
соз	Discretize the fundamental equations of flow and other transport processes using finite difference method.
CO4	Apply finite volume method for numerical modeling of fluid flow.
CO5	Solution of two-dimensional incompressible viscous flow problems using stream function vorticity formulation.
CO6	Solve Navier-Stokes equations for incompressible flows using semi-explicit and semi-implicit algorithms.

2.	Syllabus	
	GOVERNING EQUATIONS FOR FLUID FLOW AND HEAT TRANSFER	(07 Hours)
	Conservation of Mass, Newton's Second Law of Motion, Expanded Forms of equations, Conservation of Energy Principle, Special Forms of the Navier Sto Classification of Second order Partial Differential Equations, Initial and Bounda Governing Equations in Generalized Coordinates.	kes Equations,
	FINITE DIFFERENCE, DISCRETIZATISON, CONSISTENCY, STABILITY	(08 Hours)
	Elementary Finite Difference Quotients, Basic Aspects of Finite Difference Educations Sand Stability Analysis, Some Nontrivial Problems with Discretized Equations.	luations, Error
	FINITE VOLUME METHOD FOR FLUID FLOW MODELING	(12 Hours)
	Integral Approach, Discretization of Unsteady, Diffusion, Advection and Stady Advection Schemes: Central Difference Scheme, First Order Upwind Scheme, Upwind Scheme, QUICK scheme and Other Higher Order Schemes, Finite Voluments Voluments (Problems of Communication) (Note of Communication) (Not	Second Order
	SOLUTION OF VISCOUS INCOMPRESSIBLE FLOWS BY STREAM FUNCTION- VORTICITY FORMULATION	(08 Hours)

Two-Dimensional Incompressible Viscous Flow, Concept of stream-function a Derivation of vorticity transport equation, Numerical solution of coupled exporticity and stream function, Pressure Poison equation, Application to flow over flow through channel, lid driven cavity, flow over square cylinder etc.	quations for
SOLUTION OF NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLOWS USING SEMI-EXPLICIT AND SEMI-IMPLICIT ALGORITHMS	(10 Hours)
Collocated and Staggered Grid, Solution of Unsteady Navier-Stokes Equations usi explicit method for Collocated and Staggered grid, Momentum Interpolation, SIM Algorithm, Formulation of Coupled Flow with Heat Transfer and other Scalar Transfer	1PLE
(Total Contact Time:	= 45 Hours

3.	Books Recommended
1	D.A. Anderson, Tannehill J.C., Pletcher R.H., Computational Fluid Mechanics and Heat Transfer, CRC Press, 2012
2	K. Murlidhar, T. Sunderarajan, Computational Fluid Flow and Heat Transfer, Narosa Publisher, 2013
3	J.D. Anderson, Computational Fluid Dynamics, McGraw Hill, 2017
4	S.V. Patanankar, Numerical Heat Transfer and Flow, Hemispehre Publ. Corporation, 2017
5	H.K. Versteag, and W. Malalsekara, An Introduction to Computational Fluid Dynamics, Pearson, 2008

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 5	Scheme		т	P	Credit
ELEMENTS OF MICRO HYDRO PLANT AND			10.00	2.5	Cicuit
PUMPING SYSTEMS (INSTITUTE ELECTIVE-I)		3	0	0	03
ME359				1000	

1.	Course Outcomes (COs):
At the	end of the course, students will be able to
CO1	Illustrate the concepts of hydro-electric power plant and classify different hydro-electric and micro hydro-electric power plant.
CO2	Analyze flow prediction methods and evaluate flow transfer systems required based on site conditions.
соз	Identify different types of turbines and analyse their performance characteristics for selection in micro hydro plant.
CO4	Show the working of different types of governing, drives and electrical systems for micro hydro plants applications.
CO5	Explain the importance of suitable intake system for pumps.
CO6	Evaluate the performance of pump in piping system and understand various flow regulation methods for process control.

2.	Syllabus	
	INTRODUCTION	(03 Hours)
	Classification of Hydro-Electric Power Plant, Micro hydro power plant components.	: overview and
	HYDROLOGY, SITE SURVEY AND CIVIL WORKS	(12 Hours)
	Introduction, flow prediction, head measurements, site measurements of flo system layout, Weir, spillways, channel, penstocks.	ow, civil works,
	TYPES OF TURBINES	(07 Hours)
	Impulse, Turgo, Cross flow, Reaction, Reverse pump, hydrokinetic turbine turbine.	s, selection of
	GOVERNING, DRIVE AND ELECTRICAL POWER SYSTEM	(06 Hours)
	Purpose of governing, approaches to the governing, Direct couple drives: comelectricity, choosing supply, generators, synchronization.	ponents, basic

डी.ओ.एम.ई ** DoME

PUMP INTAKE SYSTEM	(05 Hours)
Suction Tank, sump and suction pipe, common faults, air entrainments, foam turbulence, suitable connections, valves, and arrangements of suction pipe and	formation reservoirs.
INTEGRATION OF PUMPS AND PIPING SYSTEM	(08 Hours)
Dump apprating point and range of appration, system survey single and branch	
Pump operating point and range of operation, system curve, single and branch variable system curves, multiple pump systems, water hammer and protection.	pipe system
The contract of the contract o	(04 Hours)
variable system curves, multiple pump systems, water hammer and protection.	(04 Hours)

3.	Books Recommended			
1	Designing and Building Mini and Micro Hydro Power Schemes, Luis Rodríguez, Practical Action Publishing, 2011			
2	Rotodynamic Pumps (Centrifugal and Axial), K. Srinivasan, Springer, 2024			
3	Pump Handbook, Igor J. Karassik et al., McGraw Hill, 2007			
4	Rotodynamic and Positive Displacement Types: Theory, Design and Applications, Sahu GK. Pumps, New Age International; 2017			
5	Planning and Installing Micro-Hydro Systems: A Guide for Designers, Installers and Engineers, Chris Elliott, Routledge, 2014			

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 5 RENEWABLE ENERGY (INSTITUTE ELECTIVE-I)	Scheme	L	т	Р	Credit
ME361		3	0	0	03

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Understand sun-earth orientation and calculate incidence angle of solar radiation
CO2	Design solar systems for a given energy utility by applying principles of solar energy conversion
CO3	Estimate the wind potential and perform power forecast analysis
CO4	Develop bio-energy based systems for a given utility by applying principles of bio-mass to bio-energy conversion.
CO5	Characterize different types of waste and compare various conversion technologies.
CO6	Compare Hydrogen with other energy resources in present context

2.	Syllabus					
	SOLAR ENERGY	(14 hours)				
	Extra-terrestrial and terrestrial, Solar radiation measuring instruments, Estimation of Solar Radiation, Various earth-sun angles. Solar Thermal Systems: Flat plate collectors, working of flat plate collectors, selective coating, working principle of evacuated tube collector, solar water heater, solar air heater, Parabolic trough collector, tracking mechanism, cosine losses, Parabolic dish collector, Linear Fresnel reflector, Heliostat field collector, Scheffler reflector, Applications of solar collectors, Solar photovoltaic systems: Principle of photovoltaic conversion of solar energy, Solar cells, Materials of solar cells, PV cell characteristics, Solar energy storage options: Electrical and heat storage technologies					
	BIO-MASS & BIO-ENERGY	(12 hours)				
	Biogas System: Anaerobic digestion, biogas production, Types of digesters, installation, operation and maintenance of biogas plants, Biogas plant manure utilisation and manure values, factors affecting biogas production, Biogas utilisation and storage, biogas for motive power generation, design calculations for biogas plants, Govt. policies. Liquid Biofuels: Biodiesel – The mechanism of transesterification, fuel characteristics of biodiesel, technical aspects of biodiesel/Ethanol and other liquid fuels utilization in engine. Biomass gasification: Different types, power generation					
	WASTE TO ENERGY CONVERSION	(06 hours)				

SI.M. UH. E

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Introducing municipal solid waste management; Waste gene Waste processing techniques; Source reduction, biological convebiogas, Incineration pyrolysis and energy recovery, waste plastic,	ersion products: Compost and			
WIND ENERGY	(08 hours)			
History of wind energy, Current status and future prospects, Wind energy in India. Power available in the wind, Components of Wind Energy Conversion Systems, Horizontal and Vertical axis wind turbine, Wind turbine power and torque characteristics, Tip speed ratio, Wind speed prediction and forecasting, Betz limit, Govt. Policies				
HYDROGEN ENERGY AND FUEL CELLS	(05 hours)			
Benefits of Hydrogen Energy, Hydrogen production technologies Use of hydrogen energy, advantages and disadvantages of Hydrogen energy, Basic principle of working of f	ogen Energy, Problems			
(Tot				

3.	Books Recommended
1	J. A. Duffie and W.A. Beckman, Solar Engineering and Thermal Processes, John Wiley and Sons., 2013
2	G. N. Tiwari, Solar Energy, Narosa Publishing House Pvt. Ltd., 2012
3	H. S. Mukunda, Understanding Clean Energy and fuels from biomass. Wiley India Pvt. Ltd, 2011
4	K. M. Mital, Biogas Systems, Principle and Applications. New Age International Ltd, 1996
5	G. D. Rai, Non-Conventional Energy Sources, Khanna Publication, 1988

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 5 Additive Manufacturing (INSTITUTE ELECTIVE-I)	Scheme	L	т	Р	Credit
ME363		3	0	0	03

1. At the	Course Outcomes (COs): e end of the course, students will be able to
CO1	Compare and distinguish various additive manufacturing processes.
CO2	Explain the process chain for selected additive manufacturing process.
соз	Decide and recommend suitable additive manufacturing process for a given material and application.
CO4	Identify defects in model and reframe in standard format.
CO5	Analyze the key drivers of additive manufacturing.
CO6	Integrate design concepts with CAD or reverse engineering for geometry preparation for additive manufacturing of parts.

2.	Syllabus						
	INTRODUCTION	(07 Hours)					
	Definition, classification, stages of generic additive manufacturing process, benefits, applications, process selection, evaluation, benchmarking, future growth and opportunities						
	LIQUID BASED PROCESSES	(09 Hours)					
	Photo polymerization, principle and working of stereo lithography appartechniques, curing processes, typical materials and applications.	Photo polymerization, principle and working of stereo lithography apparatus, scanning techniques, curing processes, typical materials and applications.					
	POWDER BASED PROCESSES	(09 Hours)					
	Powder fusion mechanism, powder handling and recycling, Principle and working of Selective Laser Sintering, Laser Engineering Net Shaping process, Electron Beam Melting, process parameters, typical materials and applications.						
	SOLID BASED PROCESSES	(08 Hours)					
	Basic principle and working of fused deposition modelling process, liquification and bonding, bio extrusion, Laminated Object Manufacturing process, Mutypical materials and applications.	310 m					
	SOFTWARE ISSUES IN ADDITIVE MANUFACTURING	(06 Hours)					

Page 22 of 94

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Preparation of CAD models and STL files, STL file problems and reparation of the community of the problems and reparation of the community of	
DESIGN FOR ADDITIVE MANUFACTURING	(06 Hou
Core concepts and objectives, unique capabilities of Additive Manufreedom, design tools.	facturing, exploring de
(Total	Contact Time: = 45 Ho

3 .	Books Recommended
1	Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer Publisher, 2010
2	C. K. Chua, K. F. Leong, C. S. Lim, Rapid Prototyping – Principles and Applications, World Scientific, 3rd Edition, 2010
3	R. Noorani, 3D printing technology, applications and selection, CRC Press, 2017
4	M. W. M. Cunico, 3D Printers and Additive Manufacturing: the rise of the industry 4.0, Concept 3D, 2019
5	A. Bandyopadhyay and S. Bose, Additive Manufacturing, CRC Press, 2015

B.Tech. III (DoME) Semester – 5	Scheme	1	т	D	Credit
POWDER PROCESSING TECHNIQUES		_	•		Creare
(INSTITUTE ELECTIVE-I)		3	0	0	03
ME365					

	Course Outcomes (COs): end of the course, students will be able to
CO1	Demonstrate the importance of powder processing route of manufacturing process, and compare powder metallurgy products with cast & wrought products.
CO2	Compare different techniques of production, testing and characterization of ceramic and metal powders.
соз	Explain different methods of conditioning of powders and analyze various techniques of compactions of powder products.
CO4	Show mechanism of sintering of green powder compacts and secondary & finishing operations in powder processing.
CO5	Analyze significance of sintering and secondary operations.
CO6	Explain detailed procedure of manufacturing of selected products by powder processing.

2.	Syllabus				
	INTRODUCTION	(06 Hours)			
	History, Basic terms related to powder processing, principle and outline of powder processing techniques, advantages and limitations of powder processing, General characteristics of ceramic and metal powders. Comparison of powder processed parts with cast and wrought products, Design considerations in powder metallurgy.				
	PRODUCTION OF POWDERS (06				
	Atomization, variants of atomization, Chemical reduction, Carbonyls, Electrolytic of Mechanical pulverization methods - crushing, milling etc.; vapour condensation, professor chemical solution, high temperature extractive metallurgy processes, production powders, Microencapsulated powders.				
	TESTING & CHARACTERIZATION OF POWDERS	(07 Hours)			
	Physical characterization related to powder particles - shapes, size, mesh distribution, surface area, porosity; flow rate, tap density, apparent density, compressibility and friction; chemical characterization related to chemical phase composition and surface characterization.	true density,			

POWDER CONDITIONING AND HEAT TREATMENT	(03 Hours)
Alloying, sintering aids, lubricants, plasticizers and binders, mixing and blendi Equipment for powder conditioning, Heat treatments of powders.	ing, granulation;
COMPACTION OF POWDER PRODUCTS	(08 Hours)
Conventional die pressing, pressure distribution during conventional die pressing, powder rolling, powder extrusion, injection moulding, hot iso spray deposition (Osprey process), pressure less compaction, compaction moulds.	o-static pressing,
SINTERING & SECONDARY OPERATIONS	(11 Hours)
Defects and defect chemistry; Solid state sintering, atomic mechanism densification, sintering kinetics: sintering stages, coarsening and grain growth phase sintering: introduction, the different stages, controlling kinetics and factors; Sintering furnaces and their classifications, batch furnace, continuing atmosphere, vacuum sintering. Finishing, machining, infiltration Resizing, Impregnation.	n kinetics; Liquid thermodynamic nuous furnaces,
SELECTED POWDER PRODUCTS	(04 Hours)
Sintered carbides and carbide tools; Cermets; Dispersion strengthe Automotive-engine bearing cap, Electrical contact materials; Self-lubricating bearings, Friction materials.	
(Total Contact Ti	me: = 45 Hours)

3.	Books Recommended					
1 R. M. German, Powder Metallurgy and Particulate Materials Processing, MPIF, 2005						
2	K. Hingashitani, H. Makino, S. Matsusaka, Powder Technology Handbook, CRC Press, 2019					
3	A. Upadhyaya, G. S. Upadhyaya, Powder Metallurgy - Science, Technology & Materials, Universities Press, Taylor & Fracis, 2018					
4	P. C. Angelo, R. Subramanian, Powder metallurgy - Science, Technology and Applications, PHI Learning Pvt. Ltd., 2008					
5	B. K. Datta, Powder Metallurgy: An Advanced Technique of Processing Engineering Materials, 2014					

B.Tech. III (DoME) Semester – 5	Scheme	1	т	D	Credit
PRODUCTION PLANNING & CONTROL			-		Credit
(INSTITUTE ELECTIVE-I)		3	0	0	03
ME367					

7/57	e end of the course, students will be able to	
CO1	Describe the concept of production planning and control act work study.	
CO2	Importance of the concept of product planning.	
CO3	Analyze the production scheduling.	
CO4	Apply the Inventory Control concepts.	
CO5	Develop the manufacturing requirement Planning (MRP II).	
CO6	Create the enterprise Resource Planning (ERP).	

2.	Syllabus			
	INTRODUCTION	(09 hours)		
	Objectives and benefits of planning and control; Functions of production conproduction: job, batch and continuous; Product development and design; Markenstein aspects; Operational aspect; Durability and dependability aspect; ae Profit consideration; Standardization, Simplification & specialization; Break Economics of a new design.	keting aspect sthetic aspect		
	WORK STUDY	(09 hours)		
	Method study, basic procedure; Selection; Recording of process; Cri Development; Implementation; Micro motion and memo motion study; Work Techniques of work measurement; Time study; Production study; Work samp from standard data; Predetermined motion time standards.	measurement		
	PRODUCT PLANNING AND PROCESS PLANNING	(09 hours)		
	Product planning; Extending the original product information; Value analysis; Problems in lack of product planning; Process planning and routing; Pre requisite information needed for process planning; Steps in process planning; Quantity determination in batch production; Machine capacity, balancing; Analysis of process capabilities in a multi-product system.			

-	PRODUCTION SCHEDULING	(09 hours)
9	Production Control Systems; Loading and scheduling; Master Scheduling; Sch Gantt charts; Perpetual loading; Basic scheduling problems; Line of balance; Flo scheduling; Batch production scheduling; Product sequencing; Production Co	ow production ntrol systems;
	Periodic batch control; Material requirement planning; Kanban; Dispatch reporting and expediting; Manufacturing lead time; Techniques for aligning cor and due dates.	
1	INVENTORY CONTROL AND RECENT TRENDS IN PPC	(09 hours)
i	Inventory control; Purpose of holding stock; Effect of demand on invento procedures. Two bin system; Ordering cycle system; Determination of Ecquantity and economic lot size; ABC analysis; Recorder procedure; Introductio integrated production planning systems; Elements of JUST IN TIME SYSTEMS; of MRP II and ERP.	onomic order n to computer
	(Total Contact Tim	e: = 45 Hours)

3.	Books Recommended			
1	Elwood S. Buffa, and Rakesh K. Sarin, Modern Production / Operations Management, 8 th Edition John Wiley and Sons, 2000			
2	Kanishka Bedi, Production and Operations management, 2 nd Edition, Oxford university press, 2007			
3	Norman Gaither, G. Frazier, Operations Management, 9th Edition, Thomson learning IE, 2007			
4	Upendra Kachru, Production and Operations Management – Text and cases, 1 st Edition, Exce books, 2007			
5	Martand Telsang, Industrial Engineering and Production Management, 1st Edition, S. Chand and Company, 2000			

B.Tech. III (DoME) Semester – 5 ANALYSIS AND SYNTHESIS OF MECHANICS (HONORS)	Scheme	L	Т	Р	Credit
MEHD2		3	1	0	04

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Illustrate the fundamentals of kinematics of different mechanisms.
CO2	Analyze the kinematics of planar and spatial mechanisms containing different number of links.
соз	Apply the principles of path curvature theory to design different mechanisms.
CO4	Synthesize and evaluate different mechanisms using graphical and analytical methods.
CO5	Examine the dynamics of different mechanisms and use simulation software packages.
CO6	Understand the different softwares for dynamic analysis.

2.	Syllabus				
	INTRODUCTION	(08 Hours)			
	Review of fundamentals of kinematics; Classifications of mechanisms; Commechanisms; Mobility analysis; Formation of one degree-of-freedom (DC kinematic chains; multi-DOF planar linkages; Network formula; Gross motion of	OF) multi-loop			
	kinematic structures of serial and parallel robot manipulators; Compliant Equivalent mechanisms	mechanisms;			
	KINEMATIC ANALYSIS OF MECHANISMS	(08 Hours)			
	Position Analysis; Vector loop equations for four bar, slider-crank, invertegeared five bar, and six bar linkages; Analytical methods for velocity and accelent of simple mechanisms; Analysis of planar complex mechanisms; Spatial RSSR methods for velocity and accelent for simple mechanisms; Analysis of planar complex mechanisms; Spatial RSSR methods for velocity and inverse kinematics of robot manipulators	ration analysis			
	PATH CURVATURE THEORY	(07 Hours)			
	Fixed and moving centrodes; Inflection points and inflection circle; Euler-Savary ed Graphical constructions – cubic of stationary curvature; Four bar coupler point curve crunode-coupler driven six-bar mechanisms				

SYNTHESIS OF MECHANISMS	(15 Hours)			
Type synthesis; Number synthesis; Associated linkage concept; Dimensional synthesis; Function generation; Path generation; Motion generation; Graphical methods; Pole technique; Inversion technique; 2-, 3-, and 4- position synthesis of four bar mechanisms; Analytical methods- Freudenstein's equation; Cognate linkages; Parallel motion linkages; Design of six bar mechanisms with single and multi-dwells; Geared five bar mechanism with multi-dwell; Determination of optimum size of cams.				
DYNAMICS OF MECHANISMS	(07 Hours)			
Combined static and inertia force analysis; Kinetostatic analysis of planar mechanisms; Force and moment balancing of linkages; Study of different mechanism simulation software packages				
(Total Contact Tim	e: = 45 Hours)			

Tutorials
Mobility analysis
Formation of multi-DOF planar linkages
Kinematic structures of serial and parallel robot manipulators
Compliant mechanisms
Analytical methods for velocity and acceleration analysis of planar mechanisms
Analysis of planar complex mechanisms
Forward and inverse kinematics of robot manipulators
Graphical construction – four bar coupler point curves
Graphical construction – cubic of stationary curvature
Graphical methods of synthesis of mechanisms
Analytical methods of synthesis of mechanisms
Combined static and inertia force analysis

4.	Books Recommended
1	K. J. Waldron, G. L. Kinzel, and S. K. Agrawal. Kinematics, Dynamics and Design of Machinery, 3 rd Edition, John Wiley, 2016
2	J. J. Uicker, G. R. Pennock, and J. E. Shigley. Theory of Machines and Mechanisms, 4 th Edition, Oxford University Press, London, 2014
3	D. H. Myszka. Machines and Mechansims: Applied Kinematic Analysis, 4 th Edition, Pearson Education India, New Delhi, 2015
4	A. Ghosh and A. K. Mallik. Theory of Mechanisms and Machines, Affiliated East West Press, New Delhi, 2008
5	E. Constans and K. B. Dyer. Introduction to Mechanism Design with Computer Applications, 1st Edition, CRC Press, Boca Raton, 2019

B.Tech. III (DoME) Semester – 5 ADVANCED HEAT TRANSFER (HONORS)	Scheme	L	Т	Р	Credit
MEHT2		3	1	0	04

	Course Outcomes (COs): At the end of the course, students will be able to					
CO1	Model heat transport phenomena in Cartesian and Cylindrical domain					
CO2	Plan analytical solutions for hat conduction with heat generation					
CO3	Elaborate the concept of bulk radiation and radiative transport equation					
CO4	Analyse flows with free for forced convective heat transfer					
CO5	Develop analogy between momentum and heat transfer					
CO6	Comprehend the concepts of boiling and condensation					

2.	Syllabus						
	CONDUCTION HEAT TRANSPORT						
	Control volume approach, constitutive relations, Energy equation in terms of te Implication of Fourier's law: principles of local action and determinism, Tensor conductivities, second law analysis of Fourier's law of heat conduction, Expanded to conduction equation in various coordinate systems. Non-dimensional form and disparameters, Initial and boundary conditions: Dirichlet, Neumann and Robin bour tions, radiation BC, treatment of interfaces.						
	ANALYTICAL SOLUTION OF THE HEAT CONDUCTION EQUATION (07 Hours)						
	Analytical solution of the steady heat conduction equation: two dimensions (Cartesian and cylindrical), Separation of Variables approach, Steady and conduction in a slab of finite thickness; effect of heat generation; non-zero in constant flux and convective boundary conditions, Analytical solution of the conduction equation, Solution by similarity variables and Laplace transforms.	unsteady heat itial condition;					
	RADIATION HEAT TRANSPORT	(10 Hours)					
	Radiation Heat Exchange between surfaces —Gas Radiation —Equivalent beam length, Enclosure theory in the presence of a radiating gas, Radiative Transfer Equation, General and Exact solution of RTE, Isothermal gas enclosures, Well-stirred furnace model, Gas radiation in complex enclosures, Interaction between radiation and other modes of heat transfer.						

	CONVECTIVE HEAT TRANSFER	(10 Hours)			
	Free and Forced convection; Similarity and Simulation of convection heat transfer, use of Boundary layer theory; Laminar internal and external flow heat transfer, Turbulent flow heat transfer; Analogy between momentum and heat transfer. Heat transfer in high velocity flow; Natural convection under different Engineering applications				
	CONVECTIVE HEAT TRANSFER WITH PHASE CHANGE	(08 Hours)			
	Condensation: Laminar film on a vertical surface, turbulent film on a vertical surface, Film condensation in other configurations, dropwise condensation, effect of non-condensable gases in condensing equipment's; Boiling: Pool boiling regimes, Nucleate boiling and peak heat flux, Film boiling and minimum heat flux, Flow boiling				
_	(Total Contac	t Time: = 45 Hours			

3.	Books Recommended
1	Muralidhar K and Banerjee Jyotirmay, Conduction and Radiation, Narosa Publication New Delhi, 2010.
2	Incropera and Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley, USA, 2011.
3	Greg F. Naterer, Advanced Heat Transfer, 3rd Edition, CRC Press, 2021
4	Amir Faghri, Yuwen Zhang, John Howell, Advanced Heat and Mass Transfer, Global Digital Press, 2010
5	Biswas G, Dalal Amaresh, Dhir V K, Fundamentals of Convective Heat Transfer, CRC Press, 2019.

B.Tech. III (DoME) Semester – 5 INDUSTRY 5.0 (HONORS)	Scheme	L	т	Р	Credit
MEHM2		3	1	0	04

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the important technological innovations of industrial revolutions 1.0 to 4.0.
CO2	Outline the characteristics, essence, and added features of Industry 4.0
CO3	Show the characteristics, essence, and added features of Industry 5.0
CO4	Apply the enabling technologies of Industry 5.0
CO5	Analyse the challenges of Industry 5.0
CO6	Illustrate the applications of Industry 5.0

2.	Syllabus						
	TECHNOLOGICAL INNOVATIONS OF INDUSTRIAL REVOLUTIONS 1.0 TO 4.0 (08 Hours)						
	First and second industrial revolutions; Third industrial revolution, programmable logic controllers, SCADA, industrial robots; Fourth industrial revolution, internet of things (IoT), industrial internet of things (IIoT), 3D printing, virtual reality (VR), augmented reality (AR), big data analytics, simulation; Review of existing maturity models for Industry 4.0						
	CHARACTERISTICS, ESSENCE, AND ADDED FEATURES OF INDUSTRY 5.0	(12 Hours)					
	Motivations behind the evolution of Industry 5.0; Definition of Industry 5.0; Characteristics of Industry 5.0, human centricity, sustainability, resilience; Essence of Industry 5.0, collaborative intelligence, multi-objective interweaving, multi-technology restructuring, multi-discipline integration, multi-sector symbiosis, multi-systems heterogeneity; Added features of Industry 5.0: smart additive manufacturing, predictive maintenance, hyper customization, cyber-physical cognitive systems, waste management through industrial upcycling, collaborative robots, artificial intelligence; Benefits of industry 5.0.						
	ENABLING TECHNOLOGIES AND CHALLENGES OF INDUSTRY 5.0	(16 Hours)					
	Cloud computing; Edge computing; Digital twins and metaverse; Collaborative robots (Cobots); Internet of everything (IoE); Blockchain and decentralized computing; 6G and beyond; Network slicing (NS); Extended reality (XR) and holography; Private mobile network (PMN); Advanced sensors; Drones; Machine-to-machine interaction; Ergonomics and bionics; Human-centric Al architecture, mutual-cognitive human-robot collaboration in factory, skilled						

		뭐요! 하다는 그런 가장에 어려워 하셨다.		•			-		
workforce,	cognitive	computing	skills	with	human	intelligend	e and	resou	rcefulness;
Implementat	ion challe	nges and lir	nitatio	ns of	Industry	5.0, social	barrier	s, tran	sformation
challenges, to	echnologic	al challenge	s, chall	enge	s related t	o data stor	age, sec	urity, a	nd privacy,
additive ma	nufacturin	g scalability	, chao	s in	human-re	obot collab	ooration	, and	regulatory
compliance									

Implementation challenges and limitations of Industry 5.0, social barriers, transformation challenges, technological challenges, challenges related to data storage, security, and privacy, additive manufacturing scalability, chaos in human-robot collaboration, and regulatory compliance
APPLICATIONS OF INDUSTRY 5.0 (09 Hours)
Automotive sector; Hi-tech electronics industrial sector; Processing and industrial manufacturing sectors; Energy sector; Education sector; Supply chain management, Intelligent healthcare, Disaster management; Future directions of Industry 5.0
(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	U. Elangovan. Industry 5.0: The Future of the Industrial Economy, CRC Press, Boca Raton, 2022.
2	M. N. Bakkar and E. McKay. Advanced Research and Real-World Applications of Industry 5.0, IGI Global, Pennsylvania, 2023.
3	P. Sharma, India Automated: How the Fourth Industrial Revolution is Transforming India. Macmillan, Mumbai, 2019.
4	K. Kotecha, S. Kumar, A. Bongale, and R. Suresh. Industry 4.0 in Small and Medium-Sized Enterprises (SMEs), CRC Press, Boca Raton, 2022.
5	H. Allam, H. Arezou, B. Ameena, A. Pallavi, and A. Hala. From Industry 4.0 to Industry 5.0: Mapping the Transitions, Springer, Singapore, 2023.

B.Tech. III (DoME) Semester – 5 ELECTRIC VEHICLES AND ENERGY STORAGE	Scheme	L	т	Р	Credit
SYSTEMS (HONORS)		3	1	0	04
MEHE2			1000		

	e end of the course, students will be able to
CO1	Get acquainted with the types of EVs, their comparison with ICE Vehicles and general aspects of major components of EV including architecture design.
CO2	Apply basic know how of electric, electronic and battery fundamentals to solve related problems linked with EV.
CO3	Evaluate performance of Li Ion batteries and work out problems pertaining to various aspects of EV Batteries.
CO4	Explain the performance of electric motors, control units, BMS systems and calculate the sizing requirement.
CO5	Show the mechanical aspects and EV charging related aspects of EV.
CO6	Work out prospects of EVs taking into account economics, various Policies safety aspects of EVs.

Syllabus				
INTRODUCTION TO ELECTRIC VEHICLES	(08 Hours)			
Historical Developments in Hybrid Electric Vehicles and Electric Vehicles. Prospects and Challenges of EVs, Comparison of EVs with I C Engines vehicles, Advantages and disadvantages of electric vehicles, Major components of Electric Vehicles. Types of Electric Vehicle and components, Electric Vehicle Architecture Design, Electrical protection and system requirement, Photovoltaic solar based EV design, Battery Electric vehicle (BEV), Hybrid electric vehicle (HEV), Plug-in hybrid vehicle (PHEV), Fuel cell electric vehicle (FCEV), Electrification Level of EV.				
EV POWER TRAIN	(08 Hours)			
Basic components like Battery, DC-AC Converters, Electric Motors, DC-DC Converters, Transmissions and ECUs. Battery and Motor Selection, Calculations for Motor and battery sizing for EV for Two, Three and Four Wheeler Applications, Thermal Management of Battery, Initial acceleration, rated vehicle velocity, maximum velocity and maximum gradeability of EV, Basic architecture of EV Drive Train				
	INTRODUCTION TO ELECTRIC VEHICLES Historical Developments in Hybrid Electric Vehicles and Electric Vehicles. Challenges of EVs, Comparison of EVs with I C Engines vehicles, Advantages and of electric vehicles, Major components of Electric Vehicles. Types of Electric components, Electric Vehicle Architecture Design, Electrical protection requirement, Photovoltaic solar based EV design, Battery Electric vehicle electric vehicle (HEV), Plug-in hybrid vehicle (PHEV), Fuel cell electric velicle Electrification Level of EV. EV POWER TRAIN Basic components like Battery, DC-AC Converters, Electric Motors, DC-D Transmissions and ECUs. Battery and Motor Selection, Calculations for Motor sizing for EV for Two, Three and Four Wheeler Applications, Thermal Managem			

BATTERY FUNDAMENTALS	(08 Hours)
Dry Cell, Wet Cell, Vehicle Batteries, Functions of Batteries, Construction of Lead Battery Grids, Electrolyte, Container, Cell Cover, Vent Plug, Cell and Battery Electrochemical Action, Charging and Discharging, Basics of Alkaline Battery, Ni Battery, Nickel Metal Hydride Battery, Sodium Sulphur Battery, Aluminium Battery selection criteria. Jump starting, Boost charging, Maintenance Free practices for battery extended life.	Arrangement, ckel Cadmium n Air Battery,
LITHIUM-ION BATTERY FOR EV	(08 Hours)
Why Li-Ion Battery, Advantages over other conventional Batteries, Charging ar reactions, Battery Performance Assessment, Battery Characteristics, Battery Battery Ratings and Capacity, Cyclic Life, Thermal Run Away, Battery Effic Testing, Battery charging and discharging calculation, Cell Selection and sizin outing design, Battery Pack Configuration, Battery Pack material and design Construction, Battery Pack Sizing, Thermal Design of Battery Pack, Heat Load Cand Thermal Management of Battery. Alternative energy storage devices	Terminology - iency, Battery ng, Battery lay consideration,
EV CHARGING TECHNOLOGY	(08 Hours)
Classification of different charging technology for EV charging station, introduct to-Vehicle, Vehicle to Grid (V2G) or Vehicle to Buildings (V2B) or Vehicle to Homoperations, bi-directional EV charging systems, energy management strategies and electric vehicle, Wireless power transfer (WPT) technique for EV charging, Charging station, Selection and Sizing of charging station, Components of charging line diagram of charging station, Charging and Energy Infrastructure Plan Infrastructure and Equipment Planning, Charging and Swapping Infrastructure	ne (V2H) used in hybrid Type of ing station,
MECHANICAL ASPECTS OF EV	(05 Hours)
Calculating the Rolling Resistance, calculating the grade resistance, Ca	laudatina tha

3.	Books Recommended
1	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and
	Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004
2	Babu A K, Electric and Hybrid Vehicles, Khanna Book Publishing, 2023.
3	Babu A K, Automotive Electrical and Electronics, Khanna Book Publishing, 2024
4	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2010.
5	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003.

B.Tech. III (DoME) Semester – 5 THERMAL & FLUID ENGINEERING (MINORS)	Scheme	L	Т	Р	Credit
MEM32		3	1	0	04

	. Course Outcomes (COs): e end of the course, students will be able to
CO1	Relate the thermodynamic laws to engineering systems and processes.
CO2	Apply the second law of thermodynamics.
CO3	Utilize concepts of fluid mechanics.
CO4	Solve appropriate mode of heat transfer while analyzing engineering problems.
CO5	Compare the different types of power cycles.
CO6	Evaluate the different types of refrigeration systems.

Syllabus					
INTRODUCTION TO THERMODYNAMICS	(10 Hours)				
Classical & statistical thermodynamics, Thermodynamic: system, properties, states, processes, cycle & equilibrium, Zeroth law of thermodynamics, Concept of Work & Heat, Pure Substance, Phase Diagrams, Mollier diagram, Ideal Gas Equation, Concept of Enthalpy, First law of thermodynamics for cycle & process, Statements of second law of thermodynamics, Carnot cycle and Concept of Entropy.					
FLUID MECHANICS & MACHINES	(12 Hours)				
Classification of fluid, Fluid properties, Fluid statics, Fluid kinematics, Fluid dynamics, Boundary layer phenomenon, Hydraulic turbines and pumps					
HEAT TRANSFER	(08 Hours)				
Modes of heat transfer: conduction, convection and radiation; Heat exchanger heat exchangers, fouling factors, LMTD, Effectiveness – NTU methods of design					
POWER CYCLES	(07 Hours)				
Air standard cycles: Otto, Diesel and Dual Cycles, Fuel air cycles and Actual Cycles, Ideal Rankine cycle, Improvement in Rankine cycle					
Air	standard cycles: Otto, Diesel and Dual Cycles, Fuel air cycles and Actua				

REFRIGERATION & AIR CONDITIONING	(8 Hours)
Reversed Carnot cycle, Aircraft refrigeration cycle, Simple vapor composition cycle, Simple vapor absorption refrigeration cycle, properties, Preparation of psychrometric charts, Psychrometric process.	cle, Psychrometric
winter air conditioning system	

3.	Books Recommended
1	Y.A. Cengel and M.A. Boles, Thermodynamics, Tata McGraw Hill, 2017
2	White F. M., "Fluids Mechanics", McGraw-Hill Inc., 7th Ed., New York, 2010
3	Y. A. Cengel, A. J.Ghajar, Heat and Mass Transfer, McGraw Hill, 2017.
4	R. K. Rajput, Thermal Engineering, Laxmi Publications, 2017
5	C. P. Arora, Refrigeration and Air conditioning, Tata McGraw Hill, 2017.

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

Subject	Code	Scheme L-T-P	Credits (Min.)	Notional hours of Learning (Approx.)			
Sixth Semester (3 rd year of UG)							
Production Technology	ME302	3-0-2	4	85			
Design of Machine Components	ME304	3-1-2	5*	100			
Applied Thermal engineering	ME306	3-1-2	5*	100			
Elective – III	ME35x	3-0-0	3	55			
Institute Elective – II	ME35x	3-0-0	3	55			
		Total	20	395			
Project Preliminaries	ME308	0-0-4	2	70			
Minor/Honor	M/HMEXX	3-1-0	4	70			
	emester (3 rd year of UG) Production Technology Design of Machine Components Applied Thermal engineering Elective – III Institute Elective – II Project Preliminaries	emester (3 rd year of UG) Production Technology ME302 Design of Machine Components ME304 Applied Thermal engineering ME306 Elective – III ME35x Institute Elective – II ME35x Project Preliminaries ME308	emester (3 rd year of UG) Production Technology ME302 3-0-2 Design of Machine Components ME304 3-1-2 Applied Thermal engineering ME306 3-1-2 Elective – III ME35x 3-0-0 Institute Elective – II ME35x 3-0-0 Total Project Preliminaries ME308 0-0-4	Production Technology			

(List of Elective / Honors / Minors)

	(List of Elective / Honors / Minors)	
	Elective - III [Semester - VI]	
1	Finite Element Methods	ME352
2	Tribology in Machine Design	ME354
3	Electric Vehicles	ME356
4	Rocket Propulsion	ME358
5	Elements of Gas Turbine	ME360
6	Unconventional Machining Processes	ME362
7	Tooling for Manufacturing	ME364
8	Logistics & Supply Chain	ME366
9	Plant Layout & Material Handling	ME368
	Institute Elective - II [Semester - VI]	
1	Robotics	ME370
2	Mechanics of Composite Materials	ME372
3	Fatigue, Fracture and Failure Analysis	ME374
4	Automobile Engineering	ME376
5	Energy and Buildings	ME378
6	Jet Propulsion	ME380
7	Machine Learning for Mechanical Engineers	ME382
8	Welding Technology	ME384
9	Data Analytics in Smart Manufacturing	ME386
10	Design for Additive Manufacturing	ME388
	Honors	
1	Machinery Fault Diagnosis and Signal Processing	MEHD3
2	Design and Optimization of Thermal Systems	MEHT3
3	Micro and Nano Manufacturing	МЕНМЗ
4	Hydro and Wind Energy	MEHE3
	Minors	
1	Manufacturing Processes	MEM33

Department of Mechanical Engineering
B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6 PRODUCTION TECHNOLOGY	Scheme	L	Т	Р	Credit
ME302		3	0	2	04

2002	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the terms related to metrology.
CO2	Apply measurement techniques for measuring length, angle and taper, screw thread parameters, gear parameters, and surface roughness.
CO3	Design limit gauges for checking internal and external dimensions of components.
CO4	Illustrate mechanism and state applications of metal forming processes.
CO5	Analyze metal forming processes such as rolling, extrusion, wire-drawing, and forging.
CO6	Identify probable defects due to rolling, extrusion, wire-drawing, and forging processes and their remedies.

2.	Syllabus	W .			
	INTRODUCTION TO METROLOGY	(04 Hours)			
	Definition of metrology, important terms such as error, zero error, accuracy, precision, sensitivity, true value, Classification of methods of measurement, Uncertainty of measurement.				
	LIMITS, FITS, AND GAUGES	(08 Hours)			
	Limit, Fit, Types of fit, Tolerance, Tolerance analysis, Interchangeability, Tolerance	vnes of gauges.			
	Design of limit gauges.	ypes or gauges,			
		(08 Hours)			
	Design of limit gauges.	(08 Hours) r measurement,			
	Design of limit gauges. MEASUREMENT Measurement of length, angle and taper; Screw thread measurement, Gea	(08 Hours) r measurement,			
	MEASUREMENT Measurement of length, angle and taper; Screw thread measurement, Gea Surface roughness measurement, Geometrical Dimensioning and Tolerancing	(08 Hours) r measurement, (GD & T). (04 Hours) ocesses, Role of			

Page **39** of **94**

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Mechanism of bulk deformation processes (rolling, forging, wire drawing, a sheet metal forming processes, Applications of metal forming processes applications of high energy rate forming processes.	
ANALYSIS OF BULK DEFORMATION PROCESSES AND MACHINE TOOLS	(11 Hours)
Analysis of forging, rolling, drawing, and extrusion processes; Machine t forming processes.	tools for differer
(Total Contact	Time: = 45 Hours

3.	Practical
1	To calibrate given indicating micrometer/micrometer
2	To find angle of V-block, dovetails, taper, and radius of circular arc
3	To calibrate given gear tooth vernier, find the tooth thickness and module
4	To find the pitch, effective diameter, best wire size of the given screw threads
5	To find the angle of external taper, taper of tapered hole, taper of tapered ring
6	To draw stress-strain behavior for model material
7	To measure the force required in extrusion
8	To find flow stress of the given material and to plot a graph of forging ratio vs flow stress

4.	Books Recommended
1	K. Bewoor and V. A. Kulkarni, Engineering metrology and measurements, Tata McGraw Hill Education, 2017
2	N. V. Raghavendra, L. Krishnamurthy, Engineering Metrology and Measurements, Oxford publishers, 2013
3	R. K. Jain, Engineering Metrology, Khanna Publishers, 1997
4	S. Kalpakjian, S. R. Schmid, Manufacturing Engineering and Technology, 7 th Edition, Pearson, 2018
5	A. Ghosh and A. K. Mallik, Manufacturing Science, East West Press New Delhi, 2010

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6 DESIGN OF MACHINE COMPOMENTS	Scheme	L	Т	Р	Credit
ME304		3	1	2	05

1000	e end of the course, students will be able to
CO1	Apply design procedures to spur, helical, bevel and worm gear.
CO2	Develop gear boxes for various industrial applications.
CO3	Discuss various types of mechanical brakes and clutches.
CO4	Elaborate the journal and antifriction bearings.
CO5	Design belt drives, pulley, flywheel and power lifting devices.
CO6	Apply the design concepts to miscellaneous machine components.

2.	Syllabus		
	Statistical Considerations in Machine Design	(03 Hours)	
	Probabilistic approach to design, statistical analysis of tolerances, reliabil factor of safety, MTBF, reliability of systems in series and parallel	ity, statistical	
	Design of Power Transmission Elements	(17 Hours)	
	Design of belt drives, selection of flat and V- belts, design of pulleys a design of gear drives – spur, helical, bevel and worm gear drives, design multistage speed reducers. Design of gear boxes: Types of gear box machine tool gear boxes using preferred numbers	of single and	
	Design of Clutches and Brakes	(05 Hours)	
Types of clutches, design of single and multiple plate clutches, conclutch, design of block brake, pivoted shoe brake, long shoe brake brake, simple and differential band brake			
	Design of Bearings	(08 Hours)	
	Design of hydrodynamic journal bearings, classification, material selection, Sommerfeld number and use of charts for the estimation of minimum film thickness, temperature rise, flow quantity etc. design of pressure fed and self-contained		

डी.ओ.एम.ई

bearings, rolling contact bearings, classification, selection factors affecting bearing life, bearing assembly and lubrication	g
Miscellaneous Machine Elements (08 Hours)	
Selection of steel wire rope for hoists and cranes, crane hooks, design of pressure vessels: thin and thick cylinder, stresses and types of failures	
Design of I.C. Engine Components (04 Hours)	
Piston, cylinder and connecting rod.	
(Total Contact Time: = 45 Hours	;)

3.	Practical
1	Drawing of involute gear profile
2	Design of spur gear
3	Design of helical gear.
4	Design of journal bearing
5	Design of two stage speed reducer gear box with its kinematic arrangement
6	Design and drawing of automobile clutch of any of the following a. Plate clutch, b. Centrifugal clutch, c. Multi-plate clutch.
7	Design and drawing of the any of the brake from following: a. External expanding brake, b. Internal expanding brake, c. Differential band brake.
8	Design and drawing of hook block
9	Selection and mounting of rolling element bearing
10	Design of bevel gear

5.	Books Recommended
1	R. G. Budynas and K. Nisbett, Shigley's Mechanical Engineering Design, 11 th Edition, McGraw Hill, 2020.
2	R. C. Juvinall and K. M. Marshek, Fundamentals of Machine Component Design, 6 th Edition, Wiley, 2017.
3	V. B. Bhandari, Design of Machine Elements, 4 th Edition, Tata McGraw Hill, 2016.
4	R. L. Norton, Machine Design, 5 th Edition, Pearson Education India Ltd., 2014.
5	M. F. Spotts, Design of Machine Elements, Pearson Education India Ltd., 2004.

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6	oME) Semester – 6 Scheme rmal Engineering	L	Т	Р	Credit
ME306		_		_	0.5
IVIESOO		3	1	2	05

))(23	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Evaluate the losses in actual cycle of IC engines
CO2	Compare the combustion and emission of CI and SI engines.
соз	Prepare heat balance sheet and calculate SI/CI engine efficiencies.
CO4	Justify the different types of refrigeration systems.
CO5	Determine the properties of moist air and present air conditioning processes on psychometric chart psychometric chart.
CO6	Compute cooling/heating loads for designing air conditioning systems plants.

2.	Syllabus			
	INTRODUCTION TO INTERNAL COMBUSTION ENGINES	(01 Hours)		
	Historical Development in IC Engines, General Specifications of I C Engines			
	FUEL AIR CYCLE AND ACTUAL CYCLE ANALYSIS	(05 Hours)		
	Significance of cycle analysis. Effect of variation in specific heat of gases, Disso Time burning Loss and other losses affecting the performance of engine cycle. air standard cycle-fuel air cycle and actual cycle analysis.			
	COMBUSTION IN SI AND CI ENGINE	(12 Hours)		
	Stages of combustion in SI Engine, Factors affecting various stages of combustic Stages of combustion in CI Engine, delay period, factors affecting stages of combustion, Difference of Ignition Delay and ignition lag, Abnormal combustion pheand CI engine and its prevention. Knocking/detonation and its effects, Comparand abnormal combustion in SI and CI Engines.	mbustion in Cl enomenon in SI		
	ENGINE EMISSION AND CONTROL	(04 Hours)		
	Pollutant – Sources and types – Effect on environment and human health – formation of Nox, Hydrocarbon Emission Mechanism – Carbon Monoxide Formation – Particulate emissions – Methods of controlling Emissions – Catalytic converters and Particulate Traps – Selective			

डी.ओ.एम.ई DoME

Department of Mechanical Engineering

B.Tech. –III, Mechanical Engineering (As per NEP)			
Catalytic Reduction (SCR) – Diesel Oxidation Catalyst (DOC). – Emission Norms and Driving cycles – Indian and Euro norms.			
AIR REFRIGERATION	(03 Hours)		
Reversed Carnot cycle, Bell Coleman cycle, Aircraft refrigeration cycle, Boot st Actual cycle, Ramming, Compression and Turbine efficiencies, Coefficient of p	15 150 15		
VAPOUR COMPRESSION REFRIGERATION	(04 Hours)		
Simple vapour compression cycle, Analysis of vapour compression cycle, Morperformance improvements to simple vapour compression system, Mulcompression system, properties of refrigerants.			
VAPOUR ABSORPTION REFRIGERATION	(03 Hours)		
Comparison between vapour absorption and vapour compression system, and Lithium Bromide absorption system	Aqua-Ammonia		
PSYCHROMETRY OF AIR CONDITIONING PROCESSES	(13 hours)		
Psychrometric properties, Preparation of psychrometric charts, Psychromet Mixing process, Sensible heating, Sensible cooling, Humidification, Dehumidification and Dehumidification, Heating and humidification, Bypass factor, Apparate Sensible heat factor, Air washer, evaporative cooling, Adiabatic humidification humidification, Summer and Winter air conditioning system, Load calculated conditions, Central air conditioning plant, Pressure drop in air ducts.	ication, Cooling us dew point, on, Efficiency of		
(Total Contact Time: = 45 Hours			

3.	Practical (Any 5 Practical from S. No. 1 to 7; and other 5 Practical from S. No. 8 to 14)
1	Study of Valve Timing/Port Timing Diagram for Engine System
2	Performance test of 4 stroke Petrol Engine.
3	Performance test of 4 stroke Diesel Engine.
4	Heat Balance Preparation for 4 stroke Diesel Engine
5	Heat Balance Preparation for 4 stroke Petrol Engine
6	Determination of friction power of multi cylinder petrol engine using Morse Test Method
7	Determination of friction power of single/multi cylinder petrol engine using Willan's Line Method
8	To conduct performance test on vapour compression refrigeration system
9	To study tools and instruments used in refrigeration and air conditioning
10	To determine psychrometric properties of air.
11	To conduct performance test on air conditioning system

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

12	To conduct performance test on Ice plant
13	To conduct performance test on vapour absorption system – Electrolux- Domestic type.
14	To conduct performance test on desert cooler

5.	Books Recommended			
1	V. Ganesan, Internal Combustion Engine, Fourth Edition, Tata Mc-Graw Hill, 2017			
2	M.L. Mathur and R.P. Sharma, Internal Combustion Engine, Dhanpat Rai Publications, 2010			
3	R. Stone, Introduction to Internal Combustion Engines, Fourth edition, Palgrave Macmillan 2012			
4	R. J. Dossat, Principles of Refrigeration, Pearson Education India, 2002			
5	C. P. Arora, Refrigeration and Air conditioning, Tata McGraw Hill, 2017			

B.Tech. III (DoME) Semester – 6 FINITE ELEMENT METHODS (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME352		3	0	0	03

1. At the	Course Outcomes (COs): end of the course, students will be able to
CO1	Explain the fundamental concepts of the theory of the finite element method
CO2	Develop element characteristic equation and generation of global equation.
соз	Determine stress, strain, loads and potential energy for flexure components
CO4	Select suitable boundary conditions to a global equation for bars, trusses and beams
CO5	Show the governing FE equations for solving 1D and 2D problems
CO6	Apply the FE method for thermal, potential flow and transient problems

2.	Syllabus				
	INTRODUCTION	(07 Hours)			
	Basic concepts of FEM, Matrix notations, Exact solution, Approximate solution, general procedure for finite element analysis, various approximate methods, types of elements, Interpolation and shape functions				
	STIFFNESS (DISPLACEMENT) METHOD	(08 Hours)			
	Introduction to Stiffness matrix, stiffness matrix for spring element, Global stiffness matrix, application of boundary conditions and forces, essential and natural boundary conditions, elimination method, penalty methods, element stresses and strains, Potential Energy approach to derive spring element Equations				
	TRUSS STRUCTURES	(07 Hours)			
	Stiffness Matrix for Bar Element, Global stiffness matrix for bar elements, computand strain for bar. Other residual method for one dimensional (1-D) bar proble				
	FLEXURE ELEMENTS	(07 Hours)			
	Beam theory, Beam stiffness matrix, Global beam stiffness matrix, equivalence l distributed loads, potential energy and Galerkin's method for beam elemental				
	FINITE ELEMENTS FOR TWO-DIMENSIONS	(08 Hours)			

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Introduction to plane stress and plane strain, constant – strain triangle (CST) stiffness matrix, body and surface force for two-dimensional element, finite element solution of plane stress problem
APPLICATIONS OF FEA IN ENGINEERING (08 Hours)
Plane elasticity, Heat conduction, Potential flow, Transient problems and Computer implementation
(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	R.D. Cook, Concepts and Applications of Finite Element Analysis, 4 th Edition, John Wiley & Sons, 2007
2	D.L. Logan, A first course in the finite element method, 5 th Edition, Cenage Learning, 2012
3	J.N. Reddy, an Introduction to the Finite Element Method, 5th edition, McGraw Hill, x 2017
4	T.R. Chandrupatla & A.D Belagundu, Finite Elements in Engineering, 4 th Edition, Pearson, 2015
5	O.C. Zienkiewicz, R.L Taylor and J.Z Zhu, The finite element method its basis and fundamentals, 7th edition, Elsevier, 2013

B.Tech. III (DoME) Semester – 6 TRIBOLOGY IN MACHINE DESIGN (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME354		3	0	0	03

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Express the concept of tribo-design and principles of tribology.
CO2	Demonstrate the lubrication and wear behavior of lower and higher kinematic pairs.
CO3	Evaluate the performance parameters for sliding element bearings.
CO4	Calculate the performance characteristics of rolling element bearings.
CO5	Analyze the lubrication behavior of involute gears.
CO6	Understand gear failures.

2.	Syllabus	
	Introduction to the concept of tribo-design: Specific principles of tribo-design, tribological problems in machine elements.	(15 Hours)
	Basic principles of tribology: Sliding friction, relative motion contact between relative motion in bodies, friction due to adhesion, deformation, energy dissipation during friction, types of wear and their mechanisms, wear in lubricated contacts and film lubrication.	
	Friction, lubrication and wear in lower kinematic pairs: Concept of friction angle, friction in screws with a square and triangular threads, plate, cone and centrifugal clutches, drives utilizing friction force, frictional aspects of brake design and tribo-design aspects of mechanical seals. Friction, lubrication and wear in higher kinematic pairs: Loads acting on contact area, traction in contact zone, rolling friction and cam-follower systems.	(15 Hours)

Sliding-element hearings: Derivation of Reynolds equation hydrostatic	(15 Hours)
	(15 Hours)
of fluid-film bearings, modern developments in journal bearing design,	
selection and design of thrust bearings.	
Rolling-contact bearings: Analysis of friction in rolling contact bearings,	
deformations and kinematics of rolling element bearings, lubrication	
analysis of rolling contact bearings.	
Lubrication and efficiency of involute gears: Generalities of gear design,	
lubrication regimes, gear failure due to scuffing, gear pitting, design	
aspects of gear lubrication and efficiency of gears.	
	Rolling-contact bearings: Analysis of friction in rolling contact bearings, deformations and kinematics of rolling element bearings, lubrication analysis of rolling contact bearings. Lubrication and efficiency of involute gears: Generalities of gear design, lubrication regimes, gear failure due to scuffing, gear pitting, design

3.	Books Recommended			
1	A. Harnoy, Bearing Design in Machinery: Engineering Tribology and Lubrication, CRC Press, 2002.			
2	G. Stachowiak and A. Batchelor, Engineering Tribology, 4th Ed., Elsevier Science, 2014.			
3	B. C. Majumdar, Introduction to Tribology of Bearings, S. Chand Limited, 2008.			
4	B. Bhushan, Introduction to Tribology, Wiley, 2013.			
5	R. Gohar and H. Rahnejat, Fundamentals of Tribology, 3 rd Ed., World Scientific Publishing Company, 2018.			

B.Tech. III (DoME) Semester – 6 ELECTRIC VEHICLES (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME356		3	0	0	03

At th	e end of the course, students will be able to
CO1	Get acquainted with the types of EVs, their comparison with ICE Vehicles and general aspects of major components of EV including architecture design.
CO2	Apply basic know how of electric, electronic and battery fundamentals to solve related problems linked with EV.
CO3	Evaluate performance of Li Ion batteries and work out problems pertaining to various aspects of EV Batteries.
CO4	Explain the performance of electric motors, control units, BMS systems and calculate the sizing requirement.
CO5	Explain the mechanical aspects and EV charging related aspects of EV.
CO6	Work out prospects of EVs taking into account economics, various Policies safety aspects of EVs.

2.	Syllabus				
	INTRODUCTION TO ELECTRIC VEHICLES	(04 Hours)			
	Historical Developments in Hybrid Electric Vehicles and Electric Vehicles. Prospects and Challenges of EVs, Comparison of EVs with I C Engines vehicles, Advantages and disadvantages of electric vehicles, Major components of Electric Vehicles. Types of Electric Vehicle and components, Electric Vehicle Architecture Design, Electrical protection and system requirement, Photovoltaic solar based EV design, Battery Electric vehicle (BEV), Hybrid electric vehicle (HEV), Plug-in hybrid vehicle (PHEV), Fuel cell electric vehicle (FCEV), Electrification Level of EV.				
	ELECTRICAL AND ELECTRONICS FUNDAMENTALS	(06 Hours)			
	Electricity, Elements of Electricity, Ohm's law, Electric Circuits, DC measuring instruments, Actions of electric current, Voltage generation, Electrochemical cells, Electronics fundamentals, Semiconductors, diodes, transistors, Integrated circuits.				
	BATTERY FUNDAMENTALS	(06 Hours)			
	Dry Cell, Wet Cell, Vehicle Batteries, Functions of Batteries, Construction of Lead Acid Battery, Battery Grids, Electrolyte, Container, Cell Cover, Vent Plug, Cell and Battery Arrangement, Electrochemical Action, Charging and Discharging, Basics of Alkaline Battery, Nickel Cadmium				

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Battery, Nickel Metal Hydride Battery, Sodium Sulphur Battery, Aluminium Air Battery,
Battery selection criteria. Jump starting, Boost charging, Maintenance Free Battery, Good
practices for battery extended life.

LITHIUM-ION BATTERY FOR EV

(06 Hours)

Why Li-Ion Battery, Advantages over other conventional Batteries, Charging and Discharging reactions, Battery Performance Assessment, Battery Characteristics, Battery Terminology Battery Ratings and Capacity, Cyclic Life, Thermal Run Away, Battery Efficiency, Battery Testing, Battery charging and discharging calculation, Cell Selection and sizing, Battery lay outing design, Battery Pack Configuration, Battery Pack material and design consideration, Construction, Battery Pack Sizing, Thermal Design of Battery Pack, Heat Load Determination and Thermal Management of Battery. Alternative energy storage devices

ELECTRIC DRIVE AND CONTROLLER

(06 Hours)

Requirements of Motors, Types of Motors, Selection and sizing of Motor, RPM and Torque calculation of motor, Central Motor Vs in Wheel Motors, Motor Controllers, Component sizing, Physical locations, Mechanical connection of motor, Electrical connection of motor. Battery Management System and Electric Management System. Functions of Control Unit.

MECHANICAL ASPECTS OF EV

(06 Hours)

Calculating the Rolling Resistance, calculating the grade resistance, Calculating the Acceleration Force, Finding the Total Tractive Effort, Torque Required on the Drive Wheel, Drive Cycle and Energy requirement per km calculations, Chassis and body considerations for EV and HEV, Steering System for EV and HEV, Suspension system for EV and HEV, Braking Systems for EV, Tyres for EVs, Material and Manufacturing considerations in EV/HEV. EV in Bus and Truck segment.

EV CHARGING TECHNOLOGY

(06 Hours)

Classification of different charging technology for EV charging station, introduction to Grid-to-Vehicle, Vehicle to Grid (V2G) or Vehicle to Buildings (V2B) or Vehicle to Home (V2H) operations, bi-directional EV charging systems, energy management strategies used in hybrid and electric vehicle, Wireless power transfer (WPT) technique for EV charging, Type of Charging station, Selection and Sizing of charging station, Components of charging station, Single line diagram of charging station, Charging and Energy Infrastructure Planning, Depot Infrastructure and Equipment Planning, Charging and Swapping Infrastructure

SAFETY, POLICIES, REGULATIONS AND ECONOMICS OF EV

(05 Hours)

Fire Safety of Electric Vehicles, Evacuation of Buses - Safe exit from Vehicles, Key driving parameters for introduction of E buses in urban environment, FAME Scheme, Payback and commercial model of charging stations, Policies in India, Std. IEC IEC 60068-2 (1,2,14,30), IEC 61683, IEC 60227, IEC 60502 IEC 60947 part I, II, III, IEC 61215

(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004
2	Babu A K, Electric and Hybrid Vehicles, Khanna Book Publishing, 2023.
3	Babu A K, Automotive Electrical and Electronics, Khanna Book Publishing, 2024
4	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2010
5	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6 ROCKET PROPULSION (ELECTIVE –III)	Scheme	L	т	Р	Credit
ME358		3	0	0	03

1 At the	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Demonstrate rocket propulsion theory and discuss classifications of rockets.
CO2	Illustrate rocket nozzle types and its performance.
CO3	Examine Trajectory of Rocket.
CO4	Explain types of chemical rockets and details of its propellant.
CO5	Analyse combustion process and ignition in rocket propellant engines.
CO6	Describe non-chemical rocket engine.

2.	Syllabus					
7	INTRODUCTION & OVERVIEW	(2 Hours)				
	Classification of Propulsive device, types of rocket engines, application of rocket engines.					
	THERMODYNAMICS AND AERODYNAMICS OF ROCKET ENGINES (3					
	Laws of thermodynamics, combustion parameters, rudiments of gas dynamics.					
	ROCKET PERFORMANCE PARAMETERS	(5 Hours)				
	Ideal rocket performance, thrust equation, Total impulse and Specific Impulse, Specific impulse efficiency, volume specific impulse, impulse-to-weight ratio, energy balance, efficiencies and coefficients of rocket engines.					
	# 100 March 1	o, energy balance,				
	# 100 00 00 00 00 00 00 00 00 00 00 00 00	o, energy balance,				
	efficiencies and coefficients of rocket engines.	(4 Hours)				
	efficiencies and coefficients of rocket engines. NOZZLES FOR ROCKET ENGINES	(4 Hours)				
	efficiencies and coefficients of rocket engines. NOZZLES FOR ROCKET ENGINES Types of nozzles, thrust-vectoring nozzles, Losses and performance analys	(4 Hours) is of rocket engines. (4 Hours)				

डी.ओ.एम.ई

Page **53** of **94**

B. lech. – III, Mechanical Engineering (As per NEP)								
Chaminal		C - I' - I	Language Character		Cal Danasal			

ROCKET PROPELLANTS ENGINES (12 Hours)				
Solid-propellant rocket engines—Burning mechanism, Propellant Burning and regression rates, Propellant grain configuration, Ignition system. Liquid-propellant rocket engines—Classification of engines, Combustion of Liquid Propellants, Combustion chamber geometric Ignition systems, cooling systems, Hybrid-propellant rocket engines—combustion chamber				
grain configuration, Ignition of hybrid propellants.				
NON-CHEMICAL ROCKET ENGINES (3 Hours)				

3.	Books Recommended
1	G. P. Sutton and O. Biblarz, Rocket Propulsion Elements, John Wiley & Sons, Inc., 2016.
2	Heister, Stephen D., William E. Anderson, Timothée L. Pourpoint, and R. Joseph Cassady. Rocket propulsion. Vol. 47. Cambridge University Press, 2019
3	J. D. Mattingly, Elements of Propulsion: Gas Turbines & Rockets, the American Institute of Aeronautics and Astronautics, 2006
4	H. S. Mukunda, understanding aerospace propulsion, Interline Publishing, Bengaluru, India, 2017
5	P. G. Hill, and C. R. Peterson, Mechanics and thermodynamics of propulsion Wesley Publishing Company, USA, 1992

B.Tech. III (DoME) Semester – 6 ELEMENTS OF GAS TURBINE (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME360	90	3	0	0	03

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Describe different cycle arrangements of gas turbines and their applications.
CO2	Analyse ideal and actual cycle.
CO3	Recognize the principles of design, construction and operation of the major components of the gas turbine engine.
CO4	Predict the effect of compressibility and flow behaviour within the gas turbine components.
CO5	Solve 1-D design problems based on 1-D duct with variable area, friction and heat transfer.
CO6	Estimate the position and effect of normal shock within the 1-D compressible flow duct.

2.	Syllabus					
	FUNDAMENTALS OF ROTATING MACHINES	(03 Hours)				
	Energy equation, General Fluid dynamics, Efficiency of rotating machines.					
	BASIC CYCLE AND APPLICATION OF GAS TURBINE PLANT (10 Hour					
	Brayton cycle, Basic & actual cycle analysis, Reheat, Intercooling and regeneration, General overview for applications of Gas turbine plant. Practical Cycles and their Analysis.					
	overview for applications of Gas turbine plant. Practical Cycles and their Analys	515.				
	MAJOR COMPONENTS AND SUPPORTING SYSTEMS OF GAS TURBINE PLANT COMPRESSOR	(12 Hours)				
	MAJOR COMPONENTS AND SUPPORTING SYSTEMS OF GAS TURBINE PLANT	(12 Hours)				
	MAJOR COMPONENTS AND SUPPORTING SYSTEMS OF GAS TURBINE PLANT COMPRESSOR Centrifugal flow compressor, Components & their functions, Velocity triangle,	(12 Hours) Performance,				

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

Types, Design requirements, Arrangement of combustion chamber, Losses & efficiency, Factors affecting combustion chamber design and performance, Requirements of Combustion chamber, Mixing and dilution.			
TURBINE	(10 Hours)		
Impulse and Reaction Turbines, multistage machines, Blade and Stage efficiting triangles of single stage machine, Blade loading and flow coefficient. Types, Materials for Turbine blades & blade cooling, Air, Lubrication, Startransmission systems.			

3.	Books Recommended	
1	Yahya S.M., Fundamentals of Compressible Flow, New Age International, 2003	
2	Radhakrishnan T., Gas Dynamics, Prentice Hall India, 2003	
3	Boyce Meherwan P., Gas Turbine Engineering Hand Book, Gulf Publication, 2003	
4	Cohen Henry and Rogers G. F. C., Gas Turbine Theory, Addison Wesley Longman, 1996	
5	Ganesan V., Gas Turbine, Tata McGraw Hill, 2003	

(Total Contact Time: = 45 Hours)

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6 UNCONVENTIONAL MACHINING PROCESSES	Scheme	L	Т	P	Credit
(ELECTIVE –III)		3	0	0	03
ME362			2.53		5334655

	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Classify non-traditional machining processes and analyze mechanical energy based non-traditional machining processes.
CO2	Illustrate and analyze chemical and electro chemical energy-based processes.
CO3	Outline and analyze thermo-electric energy-based processes.
CO4	Explain nano finishing processes.
CO5	Show influence of process parameters on performance of non-traditional machining processes.
CO6	Demonstrate hybrid machining processes and applications.

2.	Syllabus				
	INTRODUCTION AND MECHANICAL ENERGY BASED PROCESSES	(10 Hours)			
	Introduction; Need for unconventional machining processes; Classification of unconventional machining processes; Applications, advantages and limitations of unconventional machining processes; Abrasive jet machining, working principles, equipment, evaluate material removal rate; Abrasive water jet machining, working principles, equipment; Ultrasonic machining their principles, evaluate material removal rate, equipment, effect of process parameters, applications, advantages and limitations.				
	CHEMICAL AND ELECTRO CHEMICAL ENERGY BASED PROCESSES	(10 Hours)			
	Principles, equipments, evaluate material removal rate, effect of process parameters, applications, advantages and limitations of Chemical machining, Electro-chemical machining, Electro-chemical honing, Electro-chemical grinding, Electro-chemical deburring.				
	THERMO-ELECTRIC ENERGY BASED PROCESSES	(10 Hours)			
	Principles, equipments, evaluate material removal rate, effect of process parameters, applications, advantages and limitations of Electric discharge machining, Wire electric discharge machining, Laser beam machining, Plasma arc machining, Electron beam machining, Ion beam machining.				

DoME

NANO FINISHING PROCESSES	(09 Hours)		
Principles, equipments, effect of process parameters, applications, advantage of Abrasive flow machining; Chemo mechanical polishing, Magnetic at Magnetorheological finishing, Magneto rheological abrasive flow finishing.			
HYBRID NON-TRADITIONAL MACHINING PROCESSES	(06 Hours)		
Introduction; Various hybrid machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Selection and comparison of different unconventional machining processes.			
(Total Contact T	ime: = 45 Hours)		

3.	Books Recommended					
1	Adithan. M., Unconventional Machining Processes, Atlantic, New Delhi, India, 2009					
2	Carl Sommer, Non-Traditional Machining Handbook, Advance Publishing., United States, 2000					
3	V. K. Jain, Advanced machining processes; Allied publishers, 2009					
4	Golam Kibria, Bhattacharyya B. and Paulo Davim J., Non-traditional Micromachining Processes: Fundamentals and Applications, Springer International Publishing., Switzerland, 2017					
5	Jagadeesha T., Non-Traditional Machining Processes, I.K. International Publishing House Pvt. Ltd., New Delhi, India, 2017					

B.Tech. III (DoME) Semester – 6 TOOLING FOR MANUFACTURING (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME364		3	0	0	03

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Choose appropriate cutting tools required for producing a component.
CO2	Illustrate cutting tool and tool holder designation systems.
соз	Select suitable locating and clamping devices for a given component for various operations.
CO4	Analyze and design a jig/fixture for a given simple component.
CO5	Explain various press tools and press tool operations.
CO6	Classify and explain various die casting and injection moulding dies.

2.	Syllabus				
	INTRODUCTION TO TOOL DESIGN	(09 Hours)			
	Tooling, requirements of a tool designer, general tool design procedure, tool engineering functions and its importance to enhance productivity and quality. Review of cutting tool materials. Tool angles and signature, Carbide inserts grades - ISO designation and applications, tool holders for turning-ISO designation. Solid type tool, brazed tip tool, throwaway indexable insert types, coated carbides and chip breakers. Design of single point cutting tools: Design of shank dimensions using strength and rigidity considerations for rectangular, square and round cross section and selection of tool geometry.				
	DESIGN OF MULTI POINT CUTTING TOOLS	(00 Hauss)			
	DESIGN OF WIGHT POINT COTTING TOOLS	(09 Hours)			
	Design of Multi Point Cutting Tools: Types of drills, Drill bit design - elements I web thickness, land width, margin, flute length and cross section and sel geometry. Re-sharpening of drill bit. Tool holders for milling, different ta mounting tool holders in milling, ISO designation. Tool mounting systems. Decutters: Design of elements like number of teeth and height, circular pitch, be chamfer width, fillet radius and selection of tool geometry. Profile sharper relieved milling cutters. Re-sharpening of side and face milling cutter and end relieved.	ike back taper ection of too pers used fo sign of milling ody thickness ned and form			

Department of Mechanical Engineering

B.Tech. –III, Mechanical Engineering (As per NEP)

clamping devices, and power clamping. Drill bushes; Drill jigs: Different types, exercises of designing jigs for simple components. Fixture Design: Turning fixtures, milling fixtures, grinding fixtures, fixturing for CNC machining centers, and modular fixtures. Design exercises on fixtures for turning and milling for simple components
Jigs and Fixtures: Functions and differences between jigs and fixtures, advantages in mass production, design principles, economics of jigs and fixtures. Location: 3-2-1 Principle of location, different types of locating elements. Clamping: Principles of clamping, types of

PRESS TOOLS

(09 Hours)

Press tools: Classification and working of power presses. Concept and calculations of press tonnage and shut height of a press, components of a simple die, press tool operation, die accessories, shearing action in punch & die, clearance, shear on punch and die, Centre of pressure, and strip layout. Simple, progressive, compound, combination and inverted dies. Design problems on blanking and piercing dies for simple components. Bending dies: Introduction, bend allowance, spring back, edge bending die design.

DRAWING DIES

(09 Hours)

Drawing dies: Single action, double action and triple action dies, factors affecting drawing and drawing die design. Design of drawing dies for simple components. Die casting: Die casting alloys, terminology- core, cavity, sprue, slug, fixed and movable cores, finger cams, draft, ejector pins and plates, gate, goose nozzle, over-flow, platten, plunger, runner, vent, waterline etc. Types of Dies: Single cavity, multi cavity dies, combination dies, unit dies, advantages and disadvantages of types of dies; finishing, trimming and inspection of die casting components, safety, and modern trends in die casting dies.

(Total Contact Time: = 45 Hours)

3.	Books Recommended				
1	Cyril Donaldson, George H. Le Cain, and V. C. Goold, Tool Design, 5 th Edition, Mc Graw Hill Education, 2017				
2	P. N. Rao, Manufacturing Technology-I&II, 4 th Edition, Mc Graw Hill Education, 2013				
3	P. H. Joshi, Jigs and Fixtures, 3 rd Edition, Mc Graw Hill Education, 2010				
4	John G. Nee, William Dufraine, John W. Evans, Fundamentals of Tool Design, Mark Hill. Society of Manufacturing Engineers, 2010				
5	Frank W. Wilson, Fundamentals of Tool Design, PHI publications, 2012				

B.Tech. III (DoME) Semester – 6 LOGISTICS & SUPPLY CHAIN (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME366		3	0	0	03

**********	e end of the course, students will be able to
CO1	Explain the concepts of logistics, supply chain, supply chain performance, supply chain drivers and metrics.
CO2	Identify the key factors for distribution network and to develop the framework for network design decisions.
CO3	Evaluate the forecast, aggregate plan and sales & operation plan for supply chain.
CO4	Solve deterministic and probabilistic inventory control models for evaluating the supply chain inventory level.
CO5	Demonstrate the supply chain management analytics.
CO6	Apply analytics for solving the supply chain problems.

2.	Syllabus					
	LOGISTICS MANAGEMENT	(05 Hours)				
	Logistics Management-An Introduction, Key actors, Classification of Logistics Applications, Total logistics cost, Logistics to supply chain Management.					
	BUILDING A STRATEGIC FRAMEWORK TO ANALYSE SUPPLY CHAINS	(05 Hours)				
	Historical evolution of supply chain, Understanding the supply chain, performance: achieving strategic fit, supply chain drivers and metrics and case					
	DESIGNING THE SUPPLY CHAIN NETWORK	(06 Hours)				
	Designing distribution networks and applications to e-business, network design chain, network design in an uncertain environment, and case studies.	n in the supply				
	PLANNING DEMAND AND SUPPLY IN A SUPPLY CHAIN	(10 Hours)				
	Demand forecasting strategy in a supply chain, aggregate planning in a supply chain, sales and operation planning: Planning supply and demand in a supply chain, and case studies.					
	PLANNING AND MANAGING INVENTORIES IN A SUPPLY CHAIN	(09 Hours)				

Managing economies of scale in a supply chain: cycle inventory, m supply chain: safety inventory, determining the optimal level of procestudies.	
SUPPLY CHAIN MANAGEMENT ANALYTICS	(10 Hours)
Techniques for evaluating supply chain, evaluating disaster risk in bullwhip effect, Supplier selection analysis, Transportation mode a storage.	
(Total Co	ontact Time: = 45 Hours

3.	Books Recommended
1	S. Chopra and P. Meindel, Supply Chain Management: Strategy, Planning, and Operation, 6th Edition, Pearson Education, 2016
2	M. Christopher. Logistics and Supply Chain Management: Strategies for Reducing cost and Improving Services, 4 th Edition, Pearson Education, 2011
3	D. Simchi-Levi, P. Kaminsky, E. Simchi-Levi, Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies, 3rd Edition Revised, McGraw-Hill/Irwin, 2008
4	J. F. Shapiro, Modeling the Supply Chain, 2nd Wadsworth Publishing Co Inc., 2006
5	J. Heizer, B. Render, C. Munson and A. Sachan, Operations Management, 12th Edition, Pearson Education, 2017

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6 PLANT LAYOUT & MATERIAL HANDLING (ELECTIVE –III)	Scheme	L	Т	Р	Credit
ME368		3	0	0	03

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the capabilities of selecting suitable plant location considering various criteria.
CO2	Demonstrate the knowledge of factory buildings used in industries and its importance.
CO3	Compare various types of plant layouts used in industries and solve the related problem using various evaluation techniques.
CO4	Evaluate the optimum layouts using optimization techniques.
CO5	Identify suitable material handling equipment used in industries as per the requirement.
CO6	Analyze material handling equipment used in industries as per the requirement.

2.	Syllabus				
	INTRODUCTION	(04 Hours)			
	Need of plant layout; basic objectives of plant layout; types of plant layouts; types of production systems.				
	PLANT LOCATION	(06 Hours)			
	Introduction to plant location, Influence of location on plant layout, factors, Models for the plant location selection: median model, gravit selection.				
	INDUSTRIAL BUILDING	(04 Hours)			
	Relationship between the building and layout, considerations in industrial building design; types of factory buildings: single storey/horizontal buildings and multi storey buildings.				
	PLANT LAYOUT	(07 Hours)			
	Definitions of plant layout, types of plant layouts: product Layout, process layout/functional type layout, fixed position layout, group technology layout/cellular layout; advantages and disadvantages.				

DoME

al Institute of

EVALUATION OF LAYOUTS	(16 Hours)
Product layout/assembly line evaluation algorithms: largest candidate reference wester method; ranked positional weights method. Process layout evaluation quantitative factors; layout cost evaluation; comparing two layout layout relative allocation of facilities technique (CRAFT); equal area and unequal problems. Assignment model for addition of new facilities/machine to the Group technology layout evaluation: part families and machine cells; ranked to the control of	on: qualitative a out; computeriz area facility layo ne existing layo
technique.	order orderer
technique. MATERIAL HANDLING	(08 Hours)
·	(08 Hours) uipment selection

3.	Books Recommended
1	M. P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 5 th Edition, Pearson, 2018
2	R. Panneerselvam, Production and Operations Management, 3 rd Edition, Prentice Hall India, 2012
3	T. H. Allegri, Material Handling, Principles and Practice, CBS Publishers, New Delhi, 2017.
4	P.B. Mahapatra, Computer Aided Production Management, 1st Edition, Prentice Hall India, 2004
5	S. Roy, Introduction to Material Handling, 2nd Edition, New Age International (P) Ltd, 2017

B.Tech. III (DoME) Semester – 6 ROBOTICS (INSTITUTE ELECTIVE –II)	Scheme	L	т	Р	Credit
ME370		3	0	0	03

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the basics of robotic systems.
CO2	Apply the concept of robot arm kinematics.
CO3	Compare statics and dynamics of robots.
CO4	Examine manipulator trajectories.
CO5	Analyse control of robot manipulators.
CO6	Illustrate robot programming, sensing and vision.

2.	Syllabus				
	INTRODUCTION	(04 Hours)			
	Background, Historical development, Robot manipulators, Robot anatomy, Coordinate systems, Work envelope, Types and classification, Specifications, Actuators and drives				
	MATHEMATICAL REPRESENTATION OF ROBOTS	(07 Hours)			
	Rotations and translation of vectors, Transformations and Euler angle re Homogeneous transformations, Representation of position and orientation of Homogeneous transformations, Denavit-Hartenberg (D-H) notations and Representation of joints, link representation using D-H parameters	of a rigid body,			
	Forward and Inverse Kinematics	(10 Hours)			
	Introduction, Forward and inverse kinematics problems Velocity and Statics analysis: Linear and angular velocity of links, Velocity propagation, Jacobians for robotic manipulators, Statics and force transformation of robotic manipulators, Singularity analysis				
	ROBOT ARM DYNAMICS	(07 Hours)			
	Introduction, Forward and inverse dynamics, Mass and inertia of links, Lagrangian formulation for equations of motion for robotic manipulators, Newton-Euler formulation method				

TRAJECTORY PLANNING AND CONTROL	(12 Hours)
Joint and Cartesian space trajectory planning and generation, Classical the example of control of a single link, Independent joint PID control, manipulator, Force Control of manipulators	
ROBOT PROGRAMMING, SENSING AND VISION	(05 Hours)
Robot Programming. Introduction to sensing, and vision in robotics	1
(Total Con	tact Time: = 45 Hours)

3.	Books Recommended
1	A Ghosal, Robotics: Fundamental Concepts and Analysis, Oxford University Press, 2006
2	J. Craig John, Introduction to robotics: Mechanics & Control, Addison-Wesley, 1986
3	R. J. Schilling, Fundamentals of Robotics Analysis and Control, Prentice Hall of India, 2006
4	K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision and Intelligence, McGraw Hill, 1987
5	S.K.Saha, Introduction to Robotics, McGraw Hill (2008)

B.Tech. III (DoME) Semester – 6 MECHANICS OF COMPOSITE MATERIALS	Scheme	L	Т	Р	Credit
(INSTITUTE ELECTIVE –II)		3	0	0	03
ME372		57.23			803809

1.	Course Outcomes (COs):
At the	end of the course, students will be able to
CO1	Understating of the composite materials and their constituents.
CO2	Explain the mechanical properties and behaviour of composite materials.
CO3	Apply constitutive equations of composite materials at micro and macro levels.
CO4	Determine stresses and strains relation in composites materials.
CO5	Describe the different types of laminated composites and their failure mechanisms.
CO6	Use the concepts of failure criterias, critically and evaluate the Solve the problems.

2.	Syllabus			
	INTRODUCTION	(05 Hours)		
	Introduction of composite materials, Need for composites, Types of composite Ceramic matrix and Carbon-Carbon composites, Polymer matrix composites			
	COMPOSITE CONSTITUENT MATERIALS	(05 Hours)		
	Characteristics of thermosetting and thermoplastic resins. Characteristics of and Kevlar Fibers, method of making and properties, types of fiber materials.			
	MICROMECHANICS OF UNIDIRECTIONAL FIBER COMPOSITES	(10 Hours)		
	Prediction of elastic properties using strength of materials approach. Introduc			
	based approach for prediction of elastic constants (concentric cylinder m relations (Halpin- Tsai) for elastic property prediction. Comparison of different with examples. Prediction of strength and discussion on failure modes, Prediction properties	nodel). Empirical rent approaches		
	based approach for prediction of elastic constants (concentric cylinder modes, Predictions (Halpin- Tsai) for elastic property prediction. Comparison of different with examples. Prediction of strength and discussion on failure modes, Prediction of strength and discussion on failure modes.	nodel). Empirical rent approaches		
	based approach for prediction of elastic constants (concentric cylinder modes) relations (Halpin- Tsai) for elastic property prediction. Comparison of different with examples. Prediction of strength and discussion on failure modes, Prediction properties	nodel). Empirical rent approaches iction of thermal (05 Hours)		
	based approach for prediction of elastic constants (concentric cylinder management of the relations (Halpin- Tsai) for elastic property prediction. Comparison of differ with examples. Prediction of strength and discussion on failure modes, Prediction diffusion properties SHORT FIBERCOMPOSITES Load transfer length, Prediction of elastic properties. Elastic property calculates	nodel). Empirical rent approaches iction of thermal (05 Hours)		
	based approach for prediction of elastic constants (concentric cylinder model) relations (Halpin- Tsai) for elastic property prediction. Comparison of differ with examples. Prediction of strength and discussion on failure modes, Prediction of diffusion properties SHORT FIBERCOMPOSITES Load transfer length, Prediction of elastic properties. Elastic property calculation fiber composites	(05 Hours) (10 Hours) (10 Hours) (10 relations for rela		

Department of Mechanical Engineering

B.Tech. –III, Mechanical Engineering (As per NEP)

laminate sequence and type of laminates (UD, Symmetric

Description of laminate sequence and type of laminates (UD, Symmetric and Asymmetric, Balanced, Quasi-Isotropic) etc. Classical laminate theory (CLT). Failure analysis of laminates using CLT: First ply failure, progressive failure analysis. Hygrothermal stresses in laminates. Discussion on interlaminar stresses

(Total Contact Time: = 45 Hours)

3.	Books Recommended					
1	K. Kautar, Mechanics of Composite Materials, 2nd Edition, CRC Press, 2006					
2	J. N. Reddy, Mechanics of laminated composite plates and shells theory and analysis, 2nd Edition, CRC press, 2003					
3	R. M. Jones, Mechanics of composite materials, 2nd Edition, Taylor and Francis, 2018					
4	K. Serope, S. Steven, Manufacturing engineering and technology, 8"edition, Pearson, 2019					
5	P. K. Mallick, Fiber-reinforced composites: Materials, Manufacturing, and Design, 3 rd Edition, CRC Press, 2007					

B.Tech. III (DoME) Semester – 6 FATIGUE, FRACTURE AND FAILURE ANALYSIS	Scheme	L	Т	Р	Credit
(INSTITUTE ELECTIVE –II) ME374		3	0	0	03

- -	e end of the course, students will be able to
CO1	Understand the micro and macro fatigue mechanism
CO2	Design a machine member against fatigue using stress-life and strain-life analysis.
CO3	Analyze the three-dimensional principal stresses of a member from stress at a point
CO4	Build damage-tolerant components using fracture mechanics concepts
CO5	Evaluate the crack propagation life and initiation life
CO6	Apply the theories of linear elastic fracture mechanics concepts in design and estimate the fracture toughness of the materials.

2.	Syllabus					
	INTRODUCTION AND MECHANISM OF FATIGUE	(04 Hours)				
	Fatigue failure, Relation between static strength and fatigue strength. Environmental effects of fatigue, Macro and Micro Aspects of Fatigue -Fracture surfaces -Fatigue Mechanism Crack nucleation Crack growth Fatigue failure					
	DESIGN AGAINST FATIGUE					
	Different approaches to fatigue, Stress-life approach (S-N curves) for Ferrous and non ferrous materials, Types of fatigue loading, design against high cyclic fatigue, Goodman's criteria, Soderburg and Gerber's Parabola. Strain-Life Analysis - Design against low cyclic fatigue, Fundamental Material Behavior under low cyclic fatigue, Variable amplitude loading, Damage Parameters and Combined Loading (Miner rule), Methods to enhance fatigue resistance					
	THEORY OF ELASTICITY AND PLASTICITY	(08 Hours)				
	Notion of stress and strain, Principal Stresses and Principal Coordinates, Max Stress, Stress tensors, Compatibility equations, Generalized Hooke's formulation of elastic problem, Tresca's and von-Mises'Yield Criteria					
-						

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

racture mechanics, Fracture modes, Microscopic theories of fracture: Duc

heories of fracture: Ductile racture; Griffith's fracture hanics (LEFM).
(08 Hours)
, Crack Initiation and Crack ress Raisers
(07 Hours)
lures, Fundamental causes igue failure. Application of nt
Contact Time: = 45 Hours)

3.	Books Recommended
1	S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd Edition, McGraw Hill, 2017
2	R. B. Charlie and A. Chaudhary, Failure Analysis of Engineering Materials, McGraw Hill, New York, 2001
3	K. Hellan, Introduction to Fracture Mechanics, McGraw-Hill, 1984
4	S. Mohammadi, Extended finite element method, 1st Edition, Blackwell, 2007
5	P. Kumar, Elements of fracture mechanics, Tata McGraw Hill, New Delhi, 2017

B.Tech. III (DoME) Semester – 6	Scheme	1	т	P	Credit
AUTOMOBILE ENGINEERING		_	Ľ.	•	Creare
(INSTITUTE ELECTIVE –II)		3	0	0	03
ME376					

	e end of the course, students will be able to
CO1	Apply various design considerations for engine components & understand various automobile systems.
CO2	Distinguish the different allied systems of Automobile.
соз	Evaluate vehicle performance based on estimated traction forces and resistance.
CO4	Compare basic layout and structure of EV and IC Engine vehicles.
CO5	Work out battery and motor sizing for various applications in two, three and four-wheeler segment.
CO6	Analyse Bus Rapid Transit Systems.

2.	Syllabus		
	AUTOMOBILE SYSTEMS	(12 Hours)	
	Introduction to chassis frame and body, Mechanical systems, SI and CI Engine Fuel Systems, Ignition systems, Lubrication Systems, Cooling System, Intake and Exhaust Systems. Material and Design Consideration for Engine Components such as Piston, Cylinder, Piston Rings, Connecting Rod, Cam Shafts, Crank Shafts etc.		
	AUTOMOBILE ALLIED SYSTEMS	(12 Hours)	
	Transmission systems: Basics of clutch, Drive mechanism and Gear box, Basics of steering, suspension and braking system, Vehicle Electrical Systems: Charging system, Starting system, Ignition system, Lighting System, Accessories; Electronic Ignition System: types, capacitive discharge, Automotive Wiring, Lighting System, Electronic Engine Management: Sensors, ECUs and Actuators, Micro Computer controlled devices: Electronic dash board, Automotive HVAC Systems, Wheels and Tyres.		
	VEHICLE PERFORMANCE, TESTING AND RECYCLING	(06 Hours)	
	Forces and couples on wheels, Vehicle drag, Power for propulsion, Traction effort, Calculation of equivalent weight, Determination of CG, Stability of vehicle		

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

acceleration, Maximum tractive effort, and reactions for different drives, Sta		
taking a turn, Multipurpose vehicles, Automotive Indian Standards, Vehicle R	ecycling.	
INTRODUCTION TO ELECTRIC VEHICLES	(02 Hours)	
Limitations of Internal Combustion Engines as Prime Mover, History of EV a	nd EV Systems,	
Structure of Electric Vehicle covering basic Components, General Layout, Gov	t. policies on EV	
and its impact on automotive sector.		
EV POWER TRAIN	(11 Hours)	
Basic components like Battery, DC-AC Converters, Electric Motors, DC-DC Converters, Transmissions and ECUs. Battery and Motor Selection, Calculations for Motor and battery sizing for EV for Two, Three and Four-Wheeler Applications, Thermal Management of Battery, Initial acceleration, rated vehicle velocity, maximum velocity and maximum gradeability of EV,		
Basic architecture of EV Drive Train.		
URBAN TRANSPORT	(02 Hours)	
Urban Bus Specifications, Bus Rapid Transit Systems.	- Au	
(Total Contact Ti	me: = 45 Hours)	
	taking a turn, Multipurpose vehicles, Automotive Indian Standards, Vehicle Relations of Internal Combustion Engines as Prime Mover, History of EV a Structure of Electric Vehicle covering basic Components, General Layout, Gov and its impact on automotive sector. EV POWER TRAIN Basic components like Battery, DC-AC Converters, Electric Motors, DC-Transmissions and ECUs. Battery and Motor Selection, Calculations for Mo sizing for EV for Two, Three and Four-Wheeler Applications, Thermal Manager Initial acceleration, rated vehicle velocity, maximum velocity and maximum grabasic architecture of EV Drive Train. URBAN TRANSPORT Urban Bus Specifications, Bus Rapid Transit Systems.	

3.	Books Recommended
1	W.H.Crouse, Automobile Mechanics, Tata McGraw Hill, New Delhi, 2007.
2	H.Heinz, Vehicle and Engine Technology, Arnold, London, 1999
3	Joseph Kent, Handbook of Electric Vehicles, Clanrye International, 2015
4	H. Yamagata, The Science and Technology of Materials in Automotive Engine, CRC Press Inc.,2005
5	A.K.Babu, Automobile Electricals and Electronics, Second edition, Khanna Publishing, Delhi, 2020

B.Tech. III (DoME) Semester – 6 ENERGY AND BUILDINGS (INSTITUTE ELECTIVE –II)	Scheme	L	т	Р	Credit
ME378		3	0	0	03

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Express the importance of climate, building and energy.
CO2	Illustrate daylight and lightings for energy efficiency perspective.
CO3	Analyze ventilation and air quality in buildings.
CO4	Estimates building load and develop methods to reduce it.
CO5	Evaluate energy efficiency in buildings.
CO6	Distinguish green building rating systems, life cycle and environmental assessments and contribution of renewable energy.

2.	Syllabus				
	INTRODUCTION	(04 Hours)			
	Understanding building energy use, concepts of energy efficiency potentia effect of climates on building energy usage.	l in buildings			
	DAYLIGHT AND LIGHTING IN BUILDINGS	(05 Hours)			
	Introduction, Types of technology, design considerations, operation and marelevant codes and standards.	maintenance			
	VENTILATION AND AIR QUALITY IN BUILDINGS	(08 Hours)			
	Types of ventilation systems, Passive and active methods of heating and coolir layouts, performance of room air distribution systems, cooling comfort in hot cli				
	ESTIMATION OF BUILDING LOADS	(12 Hours)			
	Steady state method, Network method, Numerical method, Correlations, Computer packages for carrying out thermal design of buildings and predicting performance				
	ENERGY EFFICIENCY IN BUILDINGS	(08 Hours)			

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Energy efficient building technologies, energy efficiency policies, Bu standards, energy efficient building operation, evaluation of energy	
ADVANCES IN BUILDING	(08 Hours)
Life cycle perspective and environmental assessment of building buildings; Sustainable Building Ratin Systems.	gs. Renewable energy in
(Total C	Contact Time: = 45 Hours)

3.	Books Recommended
1	David Thorpe, Energy Management in Buildings, The Earthscan Expert Guide, 1st Ed. 2014, Routledge
2	Mili Majumdar, Energy-efficient Buildings in India, The Energy and Resources Institute (TERI), 2001
3	S. Boemi, OlatzIrulegi, Mattheos Santamouris, Energy Performance of Buildings, Energy Efficiency and Built Environment in Temperate Climates., 2016, Springer Nature
4	A Athienitis, W O'Brien, Modelling, Design, and Optimization of Net-Zero Energy Buildings, first published 2015
5	Bruce D. Hunn and Charles B. Fundamentals of Building Energy Dynamics: 4 (Solar Heat Technologies), The MIT Press, 1996

B.Tech. III (DoME) Semester – 6 JET PROPULSION (INSTITUTE ELECTIVE –II)	Scheme	L	Т	Р	Credit
ME380		3	0	0	03

1	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Explore various components of gas turbine cycles with basic cycle variations for application in jet propulsion systems.
CO2	Evaluate engine component characteristics and engine matching-off design.
CO3	Analyse the thermodynamics and performance parameters of jet propulsion systems.
CO4	Illustrate ideal and actual air breathing gas turbine cycles with performance curves.
CO5	Decide fluid flow properties for different performance parameters.
CO6	Apply the concepts of jet propulsion and solve the problems.

2.	Syllabus		
	INTRODUCTION & OVERVIEW	(08 Hours)	
	Introduction of gas turbine cycle and various components of GTP, Introduction systems, Computation of stagnation properties, Basic components of engines, Inlet ducts for aircraft gas turbines, Brief idea about compressor, chamber, turbine, and aircraft nozzles. ENGINE COMPONENT CHARACTERISTICS AND ENGINE MATCHING Component Characteristics, Engine Matching Off-design.	fair breathing	
		(07 Hours)	
	AIR BREATHING ENGINES	(14 Hours)	
	Performance parameters for air breathing engine (Thrust, Efficiency, Aircraft Ra Thrust, Specific Fuel Consumption), Basic gas generator & its variations, Turboje Turbofan, Pulse jet, Ram jet, Scramjet, Thrust Augmentation.		
	PARAMETRIC CYCLE ANALYSIS OF IDEAL AND ACTUAL AIR BREATHING GAS TURBINE ENGINES.	(16 Hours)	

Parametric Cycle Analysis of Ideal Turbo Jet Engine, Real Turbojet Cycle, Analysis of Turbofan Engine, Analysis of Turbofan Engine, Analysis of Turboprop Engine, Ramjet & Scramjet Engine, Numerical.
(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	M. S. Ramgir and M. J. Sable, Gas Turbine & Jet propulsion, Technical Publications, 2006.
2	J. D. Mattingly, Elements of Propulsion: Gas Turbines & Rockets, the American Institute of Aeronautics and Astronautics, 2006
3	V. Ganeshan, Gas Turbines, Tata McGraw Hill Education Pvt. Ltd, 2010
4	S. M. Yahya, Fundamentals of Compressible flow, New Age International Publishers, 2005
5	G. P. Sutton and O. Biblarz, Rocket Propulsion Elements, John Wiley & Sons, Inc., 2016

B.Tech. III (DoME) Semester – 6 MACHINE LEARNING FOR MECHANICAL	Scheme	L	Т	P	Credit
ENGINEERS (INSTITUTE ELECTIVE –II) ME382		3	0	0	03

1	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Understand different types of machine learning and map problems to different classes of machine learning algorithms.
CO2	Describe and apply machine-learning algorithms including decision trees, naïve Bayes, and logistic regression.
CO3	Design and implement advanced neural network architectures, including Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) (including LSTM and GRU variants), to solve complex real-world problems.
CO4	Utilize Bayesian Regression, Binary Trees, Random Forests, Support Vector Machines (SVM), Naïve Bayes, k-Means, k-Nearest Neighbors (kNN), Gaussian Mixture Models (GMM), and Expectation Maximization (EM) to analyze and optimize mechanical systems
CO5	Evaluate the performance of algorithms and compare different machine learning techniques.
CO6	Apply structured probabilistic models, Monte Carlo methods, autoencoders, and generative adversarial networks (GANs) to analyze and optimize mechanical systems

2.	Syllabus					
	MATHEMATICAL BASICS	(04 Hours)				
	Introduction to Machine Learning, Linear Algebra, Probabilit	у				
	COMPUTATIONAL BASICS	(04 Hours)				
	Numerical computation and optimization, Introduction to M	lumerical computation and optimization, Introduction to Machine Learning packages				
	LINEAR AND LOGISTIC REGRESSION	(05 Hours)				
	Bias/Variance Tradeoff, Regularization, Variants of Gradient Descent, MLE, MAP, Applications					
	NEURAL NETWORKS	(14 Hours)				
	Multilayer Perceptron, Backpropagation, Applications, Convolutional Neural Networks: CNN Operations, CNN architectures, Training, Transfer Learning, Applications, Recurrent Neural Networks: RNN, LSTM, GRU, Applications					
	CLASSICAL TECHNIQUES	(09 Hours)				

Bayesian Regression, Binary Trees, Random Forests, SVM, Naïve E	Bayes, Applications, k-	
Means, kNN, GMM, Expectation Maximization, Applications,		
ADVANCED TECHNIQUES	(09 Hours)	
Structured Probabilistic Models, Monte Carlo Methods, Autoencoders, Generative Adversaria		
Networks		
I** .	al Contact Time: = 45 Hou	

3.	Books Recommended
1	Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning (Adaptive Computation and Machine Learning series), The MIT Press, 2016
2	Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2016
3	Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili, Dmytro Dzhulgakov, Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python. Packt Publishing Ltd., 2022
4	Manaranjan Pradhan, U Dinesh Kumar, Machine Learning using Python, Wiley, 2020
5	Andreas C. Müller, Sarah Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, 2016

B.Tech. III (DoME) Semester – 6 WELDING TECHNOLOGY (INSTITUTE ELECTIVE –II)	Scheme	L	Т	Р	Credit
ME384		3	0	0	03

	. Course Outcomes (COs): e end of the course, students will be able to
CO1	Demonstrate the fundamentals of different welding processes and equipment.
CO2	Analyze the performance of different welding processes.
CO3	Select a suitable welding process for a particular application.
CO4	Apply the knowledge of welding fundamentals to solve welding problems.
CO5	Explain the impact of welding operations on health and environment.
CO6	Identify the ethical principles regarding health, safety and legal issues during operations of welding machines.

2.	Syllabus				
	INTRODUCTION TO WELDING PROCESSES	(04 Hours)			
	Definition, Terms used in welding, Advantages, Classification of welding pro- principles in brief with applications.	cesses and their			
	GAS WELDING	(04 Hours)			
	Introduction & principle of gas welding, Different gases used & their properties, Types of flames, Welding technique and safety Applications of the process.				
	flames, Welding technique and safety Applications of the process.				
	flames, Welding technique and safety Applications of the process. BRAZING AND SOLDERING	(06 Hours)			
		and spreading different brazing			

Electric arc, arc starting methods, Arc stability, arc efficiency, ampere characteristics of power source, electrode polar coding of SMAW electrodes.		
GAS TUNGSTEN ARC WELDING		(05 Hours)
Gas tungsten arc welding- Principle, Equipments used an gases and their effect, Advantages, Disadvantages and Appl		
GAS METAL ARC WELDING		(06 Hours)
Gas metal arc welding- Principle, Equipments used and va effect on bead geometry, Mode of metal transfer and puls CO2 Welding, Applications of the process.		
SUBMERGED ARC WELDING		(06 Hours)
Submerged arc welding- Principle, equipments used, we classification, flux- wire combination, Multi wire, strip classifications of the process.		
RESISTANCE WELDING		(04 Hours)
Basic principle, brief introduction to spot, seam, projection variables, resistance welding equipments, heat balance, app		lding, welding
	(Total Contact Tim	e: = 45 Hours)

3.	Books Recommended
1	P. N. Rao, Manufacturing Technology-I, 4 th Edition, McGraw Hill Education, 2013
2	Howard B. Cary, Scott C. Helzer, Modern Welding Technology, Prentice Hall, 2005
3	Baldev Raj, V. Shankar, A. K. Bhaduri, Welding Technology for Engineers, Narosa Publications, 2009
4	V. M. Radakrishnan, Welding Technology and Design, 2 nd Edition, New age internationals, 2005
5	Ernest Paul DeGarmo, J. Temple Black, Ronald A. Kohser, Materials and Processes in Manufacturing, 8 th Edition, Prentice Hall India, 2007

B.Tech. III (DoME) Semester – 6	Scheme	L	Т	P	Credit
DATA ANALYTICS IN SMART MANUFACTURING (INSTITUTE ELECTIVE –II)		3	0	0	03
ME386					

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Explain the importance of data analytics in decision making.
CO2	Illustrate the data types, distribution types and statistical parameters.
соз	Apply the descriptive analytics, and probability concepts in decision making.
CO4	Formulate sampling and estimation techniques, and test the hypothesis in decision making.
CO5	Develop the regression models in decision making and clustering.
CO6	Utilize the concept of Data Analytics in Smart Manufacturing.

2.	Syllabus		
	INTRODUCTION TO BUSINESS ANALYTICS AND DESCRIPTIVE ANALYTICS	(08 Hours)	
	Business Analytics: The Science of Data Driven Decision Making, Descriptive Analytics, Predictive Analytics, Prescriptive Analytics, Descriptive, Predictive and Prescriptive Analytics Techniques, Buf Data Analytics, Web and Social Media Analytics, Machine Learning Algorithms, Framework for Data-Driven Decision Making, Analytics Capability Building, Introduction to Descriptive Analytics, Data Types and Scales, Types of Data Measurement Scales, Population and Sample, Measures of Central Tendency, Percentile, Decile, and Quartile Measures of Variation, Measures of Shape – Skewness and Kurtosis, Data Visualization		
	PROBABILITY	(06 Hours)	
	Probability Theory – Terminology, Fundamental Concepts in Probability – Axioms of Probability, Application of Simple Probability, Bayes' Theorem, Random Variables, Probability Density Functions and Cumulative, Distribution Function of a Continuous Random Variable, Binomial Distribution, Poisson Distribution, Geometric Distribution, Parameters of Continuous Distribution, Uniform Distribution, Exponential Distribution, Normal Distribution, Chi-Square Distribution, Student's t-Distribution, F- Distribution.		
	SAMPLING AND ESTIMATION	(06 Hours)	

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

Population Parameters and Sample Statistic, Sampling, Probabilistic Sampling, Non-Probability Sampling, Sampling Distribution, Central Limit Theorem, Sample Size Estimation for Mean of the Population, Estimation of Population Parameters, Methods of Moments, Estimation of Parameters Using Methods of Moments, Estimation of Parameters Using Maximum Likelihood Estimation, Confidence Interval for Population Mean, Population Proportion, Population Mean When Deviation is Unknown, Population Variance.

HYPOTHESIS TESTING, ANALYSIS OF VARIANCE, CORRELATION ANALYSIS

(06 Hours)

Setting Up a Hypothesis Test, One-Tailed and Two Tailed Test, Hypothesis Testing for Population mean with known Variance: Z-test, Population Proportion: Z-test for Proportion, Variance: t-test, Paired Sample- t-Test, Comparing Two Populations: Two Sample Z- and t-test, Non-Parametric Tests: Chi-Square Tests, Analysis of Variance, Correlation.

SIMPLE LINEAR REGRESSION

(08 Hours)

Simple Linear Regression, History of Regression-Francis Galton's Regression Model, Simple Linear Regression Model Building, Estimation of Parameters Using Ordinary Least Square, Interpretation of Simple Linear Regression Coefficients, Validation of the Simple Linear Regression Model, Outlier Analysis, Confidence Interval for Regression Coefficients, Confidence Interval for the Expected Value of Y for a Given X, Prediction Interval for the Value of Y for a Given X.

MULTIPLE LINEAR REGRESSION AND CLUSTERING ANALYSIS

(11 Hours)

Introduction, Ordinary Least Squares Estimation for multiple linear regression, Multiple Linear regression model building, Part correlation and Regression model building, Interpretation of MLR coefficients-Partial Regression coefficient, Standardized regression coefficient, Introduction to clustering, Distance and Dissimilarity Measures used in clustering, Quality and Optimum number clusters, Clustering algorithms, Logistic Regression, Introduction to smart manufacturing, Key Drivers of Smart Manufacturing, Role of Additive Manufacturing technologies in smart manufacturing, Manufacturing of Smart Materials, 4D Printing, Artificial Intelligence in manufacturing.

(Total Contact Time: = 45 Hours)

3.	Books Recommended			
1 U. D. Kumar, Business Analytics: The Science of Data Driven Decision Making, Prentice Wil				
2	S. C. Albright and W. L. Winston, Business Analytics: Data Analysis & Decision Making, Cengage Learning, 2015			
3	R. Bartlett, A Practitioner's Guide to Business Analytics: Using Data Analysis Tools to Improve your Organization's Decision Making and Strategy, McGraw Hill Professional, 2013			
4	R. N. Prasad and S. Acharya, Fundamentals of Business Analytics, Wiley India Pvt. Ltd., 2016			
5	R. E. James, Business Analytics, Pearson Education, 2017.			

B.Tech. III (DoME) Semester – 6 DESIGN FOR ADDITIVE MANUFACTURING	Scheme	L	Т	Р	Credit
(INSTITUTE ELECTIVE -II)		3	0	0	03
ME388					

Course Outcomes (COs): At the end of the course, students will be able to				
CO1	Identify the need of design for additive manufacturing.			
CO2	Apply design and manufacturing constraints and choose appropriate polymer or metal AM process.			
CO3	Design and analyse light weight structures for metal and polymer additive manufacturing technologies.			
CO4	Analyze the complete AM process chain, from CAD part creation, to part production.			
CO5	Build topology optimized parts for additive manufacturing.			
CO6	Examining AM from an economic point of view for both direct part production and tooling applications.			

2.	Syllabus				
	INTRODUCTION TO DESIGN FOR ADDITIVE MANUFACTURING	(07 Hours)			
	Introduction to Design for X, Need for Design for Additive Manufacturing (DfAM), CAD tools vs. DFAM tools, Requirements of DFAM methods, General Guidelines for Designing AM Parts, Design to avoid Anisotropy, The Economics of Additive Manufacturing, Design to Minimize Print Time, Design to Minimize Post- Processing, Take Advantage of Design Complexity, Function First, Materials Second, Use Topology Optimization or Lattice Structures.				
	COMPUTATIONAL TOOLS FOR DESIGN ANALYSIS AND OPTIMIZATION OF AMPARTS	(08 Hours)			
	Aims of Using Design Analysis for AM, Special Considerations for Analysis of AM Parts, Meshing, Boundary Conditions, Optimization, Topology Optimization, Parametric or Size Optimization, Build Process Simulation: Model Slicing, Contour Data Organization, Layer-by Layer Simulation, Hatching Strategies, Scan Pattern Simulation and Tool Path Generation.				
	DESIGN GUIDELINES FOR PART CONSOLIDATION	(07 Hours)			
	Design Guidelines for Part Consolidation: Design for Function, Material Considerations, Number of Fasteners, Knowledge of Conventional DFM/DFA, Assembly Considerations, Moving Parts.				

DESIGN FOR LEAST MATERIAL USAGE	(08 Hours)
pology Optimization, Modelling of Design Space, Defining Design and Manufanstraints, Performing Analysis for Weight Reduction, Maximize Stiffness, Nationality, Design for Improved Functionality, Multi scale design for multi-materials, Mass customization, Biomimetic, Generative design, Design of multi-materials.	
DESIGN FOR POLYMER AND METAL ADDITIVE MANUFACTURING	(07 Hours)
Anisotropy, Wall Thicknesses, Overhangs, Support Material, Accuracy, To Thickness, Resolution, Print Orientation, Warpage, Over Sintering, Circular Pro	8
Parts, Holes, Fillets, Ribs, Threads, Font Sizes and Small Details. Powder Morp Size Distribution, Material Characteristics, Designing to Minimize Stress (Residual Stress, Shrinkage.	hology, Powder
Size Distribution, Material Characteristics, Designing to Minimize Stress	hology, Powder
Size Distribution, Material Characteristics, Designing to Minimize Stress (Residual Stress, Shrinkage.	(08 Hours) Control system, CAD Software

3.	Books Recommended
1	lan Gibson, David Rosen, and Brent Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer, 2015
2	Diegel, Olaf, Axel Nordin, and Damien Motte, A Practical Guide to Design for Additive Manufacturing, Springer, 2020
3	Rupinder Singh J. Paulo Davim, Additive Manufacturing - Applications and Innovations, CRC Press Taylor & Francis Group, 2019
4	L. Jyothish Kumar, Pulak M. Pandey, David Ian Wimpenny, 3D Printing and Additive Manufacturing Technologies, Springer, 2019
5	Laroux K, Gillespie, Design for Advanced Manufacturing: Technologies and Process, McGrawHill, 2017

B.Tech. III (DoME) Semester – 6 MACHINERY FAULT DIAGNOSIS AND SIGNAL	Scheme	L	Т	P	Credit
PROCESSING (HONORS)	3	3	1	0	04
MEHD3		2000	2.50		

1 At th	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Choose condition monitoring methods for fault diagnosis in machines.
CO2	Study the vibration signals from rotating machines.
CO3	Illustrate the vibration signals from reciprocating machines.
CO4	Analyse the signals from rotating and reciprocating machines.
CO5	Apply fault detection techniques for fault diagnosis in rotating machines.
CO6	Show the instrumentation in fault diagnosis of machines.

2.	Syllabus	
	INTRODUCTION	(20 Hours)
	Introduction to condition based monitoring, fault diagnosis and prognosis, r in fault diagnosis.	nachine learning
	Condition Monitoring Techniques: Vibration and noise monitoring, wear debridanalysis, thermography, acoustic emission, ultrasonic, Eddy current.	
Vibration Analysis: Basics of vibration, free and forced response, vibration vibration, statistical parameters i.e. RMS value, peak value, crest factor, k deviation of vibration signals.		
	Vibration Signals from Rotating Machines: Signal classification, signals generated machines, low shaft orders and subharmonics, vibrations from gears, rolling elem and electrical machines. Vibration Signals from Reciprocating Machines: Signals generated by reciprocati time-frequency diagrams, torsional vibrations.	
		ocating machines
	SIGNAL PROCESSING	(10 Hours)

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

	Sample rate and aliasing, filtering, time domain signal analysis, frequency domain signal analysis, non-stationery signal analysis, Fourier series, Fast Fourier Transform, waveletransform, Hilbert transform, modulation and sidebands, orbit and order analysis, cepstrum analysis.		
	FAULTS IN ROTATING MACHINES (15 Hours		
	Faults in Rotating Machines: Unbalance, misalignment, crack, spalling, loosening, fault in electrical machines. Failure analysis of rotating machines, bearings and gears, fans, blowers, pumps, IC Engines.		
	Instrumentation: Data recording, data acquisition, errors in measurements, transducers accelerometer, sound level meter.		
	(Total Contact Time: = 45 Hours)		

3.	Books Recommended
1	A. R. Mohanty, Machinery Condition Monitoring: Principles and Practices, CRC Press, 2014.
2	J. S. Rao, Vibration Condition Monitoring, Narosa Publishing House, 2 nd Edition, 2000.
3	K. K. Choudary, Instrumentation, Measurement and Analysis, Tata McGraw Hill, 2012.
4	R. B. Randall, Vibration-based Condition Monitoring: Industrial, Automotive and Aerospace Applications, Wiley, 2021.
5	B. K. N. Rao and A. Davies, Handbook of Condition Monitoring: Techniques and Methodology, Springer Netherlands, 1998.

B.Tech. III (DoME) Semester – 6 DESIGN AND OPTIMIZATION OF THERMAL	Scheme	L	Т	P	Credit
SYSTEMS (HONORS)		3	1	0	04
MEHT3					

1	. Course Outcomes (COs):				
At th	At the end of the course, students will be able to				
CO1	Understand the simulation of thermal systems with more than one component involving linear or non-linear equations.				
CO2	Apply various methods for both exact and best fits to fit the data.				
CO3	Analyse mathematical formulation of optimization problems as applicable to thermal systems.				
CO4	Evaluate non-linear optimization problems with both equality and inequality constraints using Lagrange multipliers.				
CO5	Choose Search methods for solving unconstrained and constrained optimization problems.				
CO6	Utilize stochastic optimization techniques to thermal system design.				

2.	Syllabus		
	DESIGN OF THERMAL SYSTEMS	(08 Hours)	
	Introduction to thermal systems, Design analysis of thermal systems through Identifying the need, Market research, Procedure of Thermal Analysis and Design in Design, Workable system and optimum system, Optimum Design.		
	THERMAL SYSTEMS SIMULATION	(10 Hours)	
	Introduction and uses of simulations, Classes of simulation, Information flow diagrams, Techniques for thermal system simulation: Successive substitution method (Example of heater, Fans, Duct Systems etc.), Newton Raphson method for single and multiple unknowns (Examples of Steam boiler, Feed water heater etc.), System of linear equations: Gauss-Seidal method (Examples from Oil cooler, Chemical reactors etc.).		
	REGRESSION AND CURVE FITTING FOR THERMAL SYSTEMS SIMULATION	(12 Hours)	
	Need for regression in thermal systems simulation and optimization, Concept exact fit, Exact fit and its types: Lagrange interpolation (Example of Heat Trans Newton's divided difference (Example of Viscosity as function of temperature) best fit, Least Square Regression (Example of Turbulent flow in a pipe, cooling	sfer from wall),), Strategies for	

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

OPTIMIZATION OF THERMAL SYSTEMS	(15 Hours
Formulation of optimization problems (Example of Refinery plate optimization problems, Optimization techniques: Calculus methods as Solar collector, Steam power plant, Calculus method: Lagrange multiand Tube Heat Exchanger, Constrained and unconstrained optimization energy systems), Tests for maxima/minima (Examples of Solar water in pipe network etc.), Handling in equality constraints, Kuhn-Tucker of	and search methods, tiplier (Example of Sl on problems (Examp r heater problems, Fl
Search methods: Unimodal function, Exhaustive search method (E heater problem), Dichotomous search method, Fibonacci series sear Water heater storage), Golden section method (Example of Heat Multivariable unconstrained problem.	ch method (Example
Linear programming and dynamic programming (Example of Refinir etc.)	ng plant, Steam turb
Non-traditional optimization techniques: Genetic algorithms, Simula of Cylindrical storage heater)	ted annealing (Exam

3.	Books Recommended
1	Essentials of Thermal System Design and Optimization, Prof. C. Balaji, Ane Books, New Delhi in India and CRC Press in the rest of the world, 2018
2	Design and optimization of thermal systems, Y. Jaluria, CRC Press, 3rd edition, 2020.
3	Engineering Design and Optimization of Thermo-fluid Systems, David S. K. Ting et al. Wiley, 2021
4	Thermal Energy Systems: Design, Computational Techniques, and Applications" Arijit Kundu et al., CRC Press, 2023
5	Introduction to optimum design, J. S. Arora, Academic Press, 5th edition, 2024.

Department of Mechanical Engineering B.Tech. –III, Mechanical Engineering (As per NEP)

B.Tech. III (DoME) Semester – 6 MICRO AND NANO MANUFACTURING (HONORS)	Scheme	L	Т	Р	Credit
менмз		3	1	0	04

	. <u>Course Outcomes (COs):</u> e end of the course, students will be able to
CO1	Classify and describe micro and nano manufacturing processes based on applications
CO2	Explain and select suitable micro machining/micro forming/MEMS processes based on given parameters and constraints
CO3	Show and select suitable MEMS/NEMS technique for identified application.
CO4	Distinguish between the requirements for micro and nano manufacturing processes
CO5	Recommend a suitable nano- manufacturing process for a given application.
CO6	Propose suitable metrological technique for measuring micro and nano features.

2.	Syllabus			
	INTRODUCTION	(03 Hours)		
	Introduction to miniaturization and its needs, scaling laws, micro p considerations, classification, selection of micro machining processes, ap			
	MICRO MACHINING PROCESSES	(14 Hours)		
	Evolution and Principle of micromachining, micro turning, micro milli ultrasonic micro machining, abrasive jet micro machining, micro electro c micro electro chemical machining, laser micro machining.			
	MICRO FORMING PROCESSES	(09 Hours)		
	Micro scale plastic deformation, size effect, micro deep drawing, micro extrusion, micro punching, micro blanking, micro fabrication using bulk metallic glasses, flow induced defects.			
	MEMS AND NEMS TECHNIQUES	(07 Hours)		
	Classification, principle and working, photo lithography, chemical etch Non-traditional optimization techniques: Genetic algorithms, Simulated of Cylindrical storage heater)			
	INTRODUCTION TO NANO MANUFACTURING	(08 Hours)		

डी.ओ.एम.ई DoME Page 89 of 94

Department of Mechanical Engineering

B.Tech. -III, Mechanical Engineering (As per NEP)

Transition from nano technology to nano manufacturing; dia joining, nano soldering, nano welding, mechanical bonding deposition, scanning tunnelling microscopy, nano lithography	
ABRASIVE BASED NANO FINISHING PROCESSES	(04 Hours
Abrasive flow finishing, chemo-mechanical polishing, m magnetorheological finishing, magnetorheological abrasive flo polishing, hybrid nanofinishing: chemo-mechanical ma electrochemical magnetic abrasive finishing	
(Tot	al Contact Time: = 45 Ho

3.	Books Recommended
1	Kei Cheng & Dehong Heo, Micro Cutting: Fundamentals and Applications, John Willey & Sons, 2013.
2	V K Jain, Micromanufacturing Processes, CRC Press, 2013.
3	Mark J. Jackson, Micromachining with Nanostructured Cutting Tools, Springer, 2013.
4	N. Maluf and K. Williams, Introduction to MEMS Engineering, 2nd edition, Artechhouse, 2004.
5	V K Jain, Nanofinishing Science and Technology, CRC Press, 2017.

B.Tech. III (DoME) Semester – 6 HYDRO AND WIND ENERGY (HONORS)	Scheme	L	Т	Р	Credit
MEHE3		3	1	0	04

	. Course Outcomes (COs):
At th	e end of the course, students will be able to
CO1	Introduce the fundamental principles of hydropower, including the conversion of potential energy in water into mechanical and electrical energy.
CO2	Explore the various auxiliary systems and supporting structures essential for the operation, safety, and efficiency of the Hydro power plant.
CO3	Evaluate the different types of hydraulic turbines and understand their operating mechanisms, performance, design differences, and applications.
CO4	Understand of the fundamental principles, technologies, and applications of wind energy as a renewable power source.
CO5	Comprehend the fundamental concepts of wind energy conversion, including the basic principles of harnessing wind energy and converting it into electrical energy.
CO6	Assess theoretical and practical performance of wind turbines including optimal tip speed ratio requirement

2.	Syllabus			
	INTRODUCTION TO HYDROPOWER	(08 Hours)		
	Introduction, Water Cycle in Nature, Application of Hydro-Electric power pl Hydro power worldwide, Advantages and disadvantages, Introduction to sma Plants, Selection of site for Hydropower plant, Classification, Operational term	ll Hydro Power		
	HYDROPOWER ELEMENTS	(08 Hours)		
	Important Parts of Hydropower Station: Turbine, Electric Generator, Transformer and Power House, Structural parts: Dam and Spillway, Surge Chambers, Stilling Basins, Penstock and Spiral Casing, Tailrace, Pressure Pipes, Caverns, auxilliary parts.			
	HYDRAULIC TURBINES	(08 Hours)		
	Hydraulic Turbines: Classification of Hydraulic Turbines, Impulse and Read Turbines, Theory of Hydro Turbines, Cost of Hydro power, Hydrology: Cyle, Mydro graph and flow duration curve.			

INTRODUCTION TO WIND ENERGY	(08 Hours)
Introduction, History of wind energy, Current status and future p India, Advantages and Disadvantages of Wind Energy, Environment Sources of Wind, Wind availability and measurement.	
WIND ENERGY CONVERSION SYSTEMS (WECS)	(08 Hours)
Principle of Wind Energy Conversion, Wind Power, Basic Componen Conversion System, Advantages and Disadvantages of WECS, Consider	
Site for WECS.	lerations for Selection of
[4] - 10 - 10 - 10 - 10 - 15 - 15 - 15 - 15	(05 Hours)
Site for WECS.	(05 Hours) orizontal and Vertical axis speed ratio, Optimal tip

3.	Books Recommended	
1	Twidell, J., & Weir, T. Renewable Energy Resources. Routledge, 2015	
2	Spera D.A., Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, 2009	
3	Er. R. K. Rajput, Non-Conventional Energy Sources and Utilisation, S. Chand Publication, 2014	
4	Dr. R. K. Singhal, Non-Conventional Energy Resources, S.K. Kataria and Sons, 2013	
5	Wagner, Hermann-Josef, Mathur, Jyotirmay, Introduction to Hydro Energy Systems Basics, Technology and Operation, Springer, 2011	

B.Tech. III (DoME) Semester – 6 MANUFACTURING PROCESSES (MINORS)	Scheme	L	Т	Р	Credit
MEM33		3	1	0	04

	e end of the course, students will be able to
CO1	Classify and explain manufacturing processes.
CO2	Outline the working principles of various metal casting processes.
CO3	Explain the principles of material removal, bulk deformation of metals, and sheet metal operations.
CO4	Compare various joining processes and explain their defects & prevention.
CO5	Select relevant the manufacturing processes for a given workpieces to create desired feature.
CO6	Show need of the heat treatment and surface modification processes.

2.	Syllabus				
	INTRODUCTION	(08 Hours)			
	Introduction to manufacturing, Fundamental approaches of manufacturing, Classification of manufacturing processes, Specific advantages and limitation, Materials in manufacturing Selection of manufacturing processes, Application of manufacturing processes, Effect of manufacturing processes on properties of metals. Introduction of computer-integrated manufacturing systems, micro & nano-manufacturing, automation.				
	METAL CASTING	(09 Hours)			
	Introduction of Metal Casting & Suitability, Steps of casting processes, Pattern allowances, Sand Moulding, Core & Core Prints, Gating System, Cleaning of casting, Casting defects & their prevention, Shell moulding, Investment and permanent mould casting.				
	METAL FORMING	(08 Hours)			
	Hot and cold working, Deformation processes and sheet metal operations.				
	MATERIAL REMOVAL	(14 Hours)			

Introduction to Machining, Mechanism of the metal cutt Cutting tool technology: tool geometry, failure and tool different conventional and nonconventional machining p	life, tool materials; Introduction
JOINING OF METALS	(06 Hours)
Fundamentals of joining of metals, Joining processes; Weldability and welding defects.	
	(Total Contact Time: = 45 Hou

3.	Books Recommended			
1	S. Kalpakjian and S. R. Illinois, Manufacturing Engineering and Technology; 6 th Edition, Pearson Prentice Hall, New Jersey, 2010.			
2	M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems; 3 rd Edition, Wiley India Pvt. Ltd., New Delhi, 2012.			
3	P. N. Rao, Manufacturing Technology-I, 4th Edition, Mc Graw Hill Education, 2013.			
4	P. N. Rao, Manufacturing Technology-II, 4th Edition, Mc Graw Hill Education, 2013.			
5	Ernest Paul DeGarmo, J. Temple Black, Ronald A. Kohser, Materials and Processes in Manufacturing, 8 th Edition, Prentice Hall India, 2007.			

